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Abstract—This paper proposes a novel safety-critical sec-
ondary voltage control method based on explicit neural networks
(NNs) for islanded microgrids (MGs) that can guarantee any
state inside the desired safety bound even during the transient.
Firstly, an integrator is introduced in the feedback loop to fully
eliminate the steady-state error caused by primary control. Then,
considering the impact of secondary control on the stability of the
whole system, a set of transient stability and safety constraints
is developed. In order to achieve online implementation that re-
quires fast computation, an explicit NN-based secondary voltage
controller is designed to cast the time-consuming constrained
optimization in the offline NN training phase, by leveraging
the local Lipschitzness of activation functions. Specially, instead
of using the NN as a black box, the explicit representation of
NN is substituted into the closed-loop MG for transferring the
stability and safety constraints. Finally, the NN is trained by safe
imitation learning, where an optimization problem is formulated
by maximizing the imitation accuracy and volume of the stable
region while satisfying the stability and safety constraints. Thus,
the safe and stable region is approximated that any trajectory
initiates within will converge to the equilibrium while bounded
by safety conditions. The effectiveness of the proposed method
is verified on a prototype MG with detailed dynamics.

Index Terms—Neural network (NN), microgrid (MG), transient
stability and safety, secondary voltage control.

I. INTRODUCTION

W ITH the increasing penetration of inverted-based re-
newables, the inertia of the power network continuous-

ly reduces, thus intensifying the challenges of ensuring system
stability and safety. Microgrids (MGs) as localized small-scale
power systems, that can operate in both grid-tied and islanded
modes, have shown potential for improving the resilience of
power networks [1]–[5]. In grid-connected mode, the MG is
mainly governed by the main grid. While in islanded mode,
local controls are needed to coordinate multiple distributed
energy resources (DERs). A hierarchical control structure is
commonly used for islanded MGs, which intrinsically de-
couples the control objectives based on different time scales.
Primary control stabilizes the DERs at the fasted and lowest
layer, which is usually implemented with droop equations.
Secondary control is needed to eliminate the steady-state error
caused by the droop characteristics. Tertiary control focuses on
economic dispatching and operation scheduling in the slowest
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time scale and does not directly take into consideration the
transient stability and safety constraints [6].

According to the time scales, stability and safety can be
classified into steady-state and transient-state [7]. Transient
stability problem has been widely investigated in MG con-
trol, which ensures that the trajectories of MG states (e.g.,
voltage, current, frequency, etc.) converge to the equilibrium.
While transient safety is rarely studied which requires each
critical state to satisfy certain operational conditions during
the transient. Transient safety issue is important for enhancing
system reliability, as it can be of higher priority to bound the
system trajectories inside a certain safe region, rather than
only ensuring convergence without considering overshooting.
Conventionally, steady-state safety is considered as algebraic
inequality constraints in the slowest time scale at the tertiary
level [8]. However, as the reduction of network inertia, large
overshooting and intense fluctuations become more likely to
happen during the transient aroused by various disturbances
[9]. As a result, it is imperative to take into account the
transient safety in the faster secondary level [10]. Therefore,
this paper focuses on the secondary control of MG considering
transient stability and safety constraints.

From the viewpoint of the time scale of MG modeling,
secondary control can also be classified into steady-state and
transient-state. In the first class, partial high-level dynamics
(e.g., derivative of droop equations) [11], [12] or even only
steady states [13], [14] are considered by using power flow
equations to model the MG. These methods have notable
scalability for regulating steady-state voltage and frequency
in high-dimensional MG. Operational constraints such as
steady-state safety and stability are uncomplicated to execute
by means of static optimization. However, it cannot satisfy
transient constraints and may result in sampled-data control
problems in lower-level [15]. The second class considers
detailed dynamics of inverters thus enabling control of MGs
in transient-state [16], [17]. More efforts have been made
on stability-constrained optimization [18], parametric stability
conditions [19] and small-signal stability analysis for reduced-
order dynamic model [20]. Nonetheless, these methods suffer
from scalability issues for high-dimensional MGs. More elab-
orate reviews about control architecture and communication
infrastructure such as centralized, decentralized and distributed
secondary control methods are covered in [21], [22].

The existing secondary control methods consider only sta-
bility but not transient safety. Moreover, these methods cannot
compute the stable region which is important for initial and
operating points selection for operators. To fill this gap, safety-
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critical control is attracting increasing attention in the power
systems community. Secondary control of MG with transient
stability and safety guarantees is essentially a dynamic con-
strained optimization problem. A classical method is model
predictive control (MPC), which can directly handle dynamic
constraints [23]. However, it suffers from a high computational
burden aroused by system order and prediction horizon. Thus,
in MPC-based secondary control, the order of the MG dynamic
model is usually highly reduced, leading to the loss of faster
dynamics and corresponding stability and safety guarantees.
Moreover, nonlinearities of MG and information disparity due
to communication overheads are also challenging to overcome
in such a method [7]. Another method that can guarantee
transient stability and safety in power systems is the control
Lyapunov function (CLF) and control barrier function (CBF)
based method. In this method, CLF is used for stabilization
and CBF is to ensure safety based on forward set-invariance
principles via Lyapunov-like conditions [24]. This method
has difficulty in artificially constructing Lyapunov and barrier
functions, thus it often results in excessive computational cost
and conservative estimation of the stable and safe region.

This paper proposes a novel secondary voltage control
scheme with transient stability and safety guaranteed. The
frequency control can be achieved similarly using the proposed
method by replacing the Q-V droop with P -f droop. To fully
eliminate the steady-state errors of DER output voltages, an
integrator is introduced into the feedback loop [25]. Then,
for online implementation that requires the fast computation
of control signal, we innovatively utilize the learning feature
of neural networks (NNs) to cast the computational-intensive
constrained optimization problem into offline training. The NN
training is formulated as an optimization problem maximizing
the tracking accuracy and volume of approximated stable
region, while enforcing stability and safety constraints. An
alternating direction method of multipliers (ADMM) is used
to efficiently solve this multi-objective optimization problem
[26]. The well-trained NN is a nonlinear algebraic function
that can be conveniently used online as the secondary voltage
controller guaranteeing transient stability and safety of MG.

The main contributions of this paper are concluded as the
following three aspects:

• A general methodology for propagating the constraints
from MG states onto the parameters of the explicit NN
is developed based on the local Lipschitz condition. Com-
pared with the existing online constrained optimization-
based control approaches, the proposed safe and stable
secondary voltage control method has a significantly
lower computational cost and hardware requirement for
online computational implementation.

• To guarantee stable and safe MG operation, a set of novel
transient stability and safety constraints are developed,
convexified and integrated into the training of explicit
NN-based controllers.

• The proposed safe and stable secondary voltage control
method can maximize the inner approximation of the
stable region, which provides informative visualization
for selecting initial and operating points.

The rest of the paper is organized as follows: Section
II introduces the safe and stable secondary control problem
of MG. Section III proposes an offset-free online secondary
voltage control method based on explicit NN. Section IV
develops the offline training method of the explicit NN with
stability and safety constraints based on imitation learning. In
Section V, case studies are conducted to validate the proposed
approach and Section VI concludes the paper.

II. PROBLEM STATEMENT

An inverter-based islanded MG with m DERs, p RL loads
and q lines can be represented in a general state space model
[27]:

ẋ(t) = F(x(t),u(t)), (1a)
y(t) = G(x(t)), (1b)

where y = [uo1, . . . , uom]> is the output vector containing the
output voltage of each DER in the MG, uoi =

√
u2

odi + u2
oqi;

x = [x>inv1, . . . ,x
>
invm,x

>
line1, . . . ,x

>
lineq,x

>
load1, . . . ,x

>
loadp]>

is the state vector of inverters, lines and loads; xinvi =
[δi, Pi, Qi, φdi, φqi, γdi, γqi, ildi, ilqi, uodi, uoqi, iodi, ioqi]

>
, i =

1, . . . ,m, respectively denotes the phase angle, output
active/reactive power, states of PI controllers, inductor
currents, output voltages and output currents of the ith DER;
xlinei = [ilineDi, ilineQi]

>
, i = 1, . . . , q, are the currents of the

ith line in d-q axis; xloadi = [iloadDi, iloadQi]
>
, i = 1, . . . , p,

are the currents of the ith load in d-q axis;
u = [uset1, . . . , usetm]

> denotes the voltage setpoint for
the droop controllers of each DER, and it is also the control
vector to be generated by the secondary controller; denoting
n = 13m + 2p + 2q, F : Rn × Rm → Rn is the state
function and G : Rn → Rn denotes the output function.
This high-dimensional dynamic model describes the detailed
transient dynamics of the whole MG, thus the transient safety
of all states can be taken into consideration.

In this framework, the inverter is directly controlled by
double-loop PI controllers which are also named zero-level or
inner control loops. The reference signal for the inner control
loop, u∗oi(t), is generated by the primary controller using droop
characteristics as follows,

u∗odi(t) = useti(t)−DqiQi(t), u
∗
oqi(t) = 0 (2)

where Qi(t) is the output reactive power of the ith DER
passing through a low pass filter; Dqi is the Q-V droop gain.
Voltage control of microgrids aims to regulate the DER output
voltage uodi to the desired value. With primary control (2)
only, setpoint useti is selected as the desired value but there
will remain a residual −DqiQi(∞) at the steady state. Thus,
the primary control signal u∗odi does not equal to the setpoint
useti. The inner-control loops can accurately regulate uodi to
u∗odi with well-tuned parameters, nonetheless, this will lead to
uodi 6= useti. To eliminate this steady-state error, a secondary
controller can be designed to automatically tune useti(t) using
the feedback measurements.

Secondary control as a technique for compensating the
off-set has been widely studied, nonetheless, most existing
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Fig. 1. Projection of SSR of an MG onto a two-dimensional plane composed
of two DERs output voltages. The yellow area denotes the safe region, and
the blue area is the SSR.

methods cannot guarantee that all the critical signals are
bounded within safe region all the time including the transient.

Definition 1: The safe region is defined as a polytope
that is symmetric around the steady-state operating point x∗
(equilibrium):

B , {x(t) ∈ Rn | −x̃ub 6 Hx̃(t) 6 x̃ub,∀t}, (3)

where x̃(t) , x(t)−x∗ is the error state vector, H ∈ RnS×n

selects and combines the critical states, and x̃ub ∈ RnS >
0 contains the corresponding upper bounds. Note that the
transient safety constraint (3) is essentially a general state
constraint. The transient safe bound mainly depends on the
safety concerns and physical constraints of the hardware. It
is usually larger than steady-state bound. However, to the
authors’ best knowledge, there still lacks a commonly accepted
standard suggesting the magnitude of transient safety bound
for microgrids. To this end, we assume the steady-state bound
as the transient bound for the DER output voltages, e.g.
[0.95, 1.05] p.u. for DER output voltages as shown in Fig. 1.
If such a tight bound can be satisfied by the proposed method,
then a looser transient bound can be respected naturally.

Although the primary controller has been designed to sta-
bilize the MG, the implementation of a secondary controller
can actually influence the dynamic behavior and system sta-
bility. Therefore, the transient stability of the closed-loop MG
system should be guaranteed when the secondary controller
is interfaced. Unlike other methods that can only analyze
whether the closed-loop system is stable or not, the proposed
control method in this paper will also provide the largest
inner approximation of the stable region, i.e., the region of
attraction (ROA) within which the initial state will converge
to the equilibrium asymptotically. To simultaneously satisfy
both the safety and stability conditions, we give the following
definition.

Definition 2: The safe and stable region (SSR) is defined as

S , {x0 ∈ B | lim
t→∞

φ(t; x0) = x∗,φ(t; x0) ∈ B,∀t}, (4)

where x0 is an initial value, and φ denotes the solution of the
closed-loop system (1) with designed secondary controller u.

Figure 1 demonstrates the relationship between safety con-
straints and SSR in a two-dimensional projection. The SSR is
an inner approximated ROA bounded by safety constraints.

Our control objective is to design a novel secondary
controller that computes fast enough to be applied online while
satisfying the transient stability and safety constraints (3)-
(4). For nonlinear model (1), there remain four challenges to
realize safe and stable secondary control: a) the dynamics of
state observer must be considered when deriving the stability
condition due to the violation of separation property; b) there
lacks a systematic method to establish Lyapunov functions
for microgrids, such that an artificially constructed Lyapunov
function usually leads to conservative results and the stability
condition is typically difficult/impossible to be convexified;
c) transient safety constraints are essentially state constraints,
which are difficult to be satisfied in the controller design
for nonlinear systems; d) the existing online optimization
based nonlinear control methods such as nonlinear MPC are
online computation-costly. To this end, a small-signal model
developed in [27] is modified and adopted in this paper.
With a small enough sampling interval satisfying the Nyquist-
Shannon sampling theorem [23], the small-signal system de-
veloped in [27] can be discretized as the following difference
equations with high fidelity using zero-order holder,

x̃(k + 1) = Amgx̃(k) + Bmgũ(k), (5a)
ỹ(k) = Cmgx̃(k), (5b)

where (x̃, ũ, ỹ) = (x−x∗,u−u∗,y−y∗) are defined as small
deviations from the equilibria; k denotes the discrete-time step;
Amg ∈ Rn×n, Bmg ∈ Rn×m and Cmg ∈ Rm×n are state,
input and output matrices, respectively and their derivations
can be found in [27].

Remark 1: An important issue in microgrid secondary con-
trol is the communication time delays, whose impact depends
on its magnitude. In normal operation situations, typically the
wireless communication time delays are negligible. In [28], an
experimental study was performed to show that the minimum
expected communication time delay in IEEE 802.11 (WiFi)
from the moment of packet reception until completion of
broadcasting is of the order of 10 ms, which is no larger
than the typical sampling rate of the secondary control of
microgrids. In cases with bad communication conditions, large
time delays (of the order of 100 ms) may occur. In such a
situation, Eq. (5) needs to be revised to accommodate the com-
munication time delay and a tailored design of the secondary
controller for handling the large time delays is necessary
for maintaining stability [29], [30]. Controlling microgrids
with large communication time delays while guaranteeing the
transient safety constraints simultaneously is still challenging
and out of the scope of this paper.

III. OFFSET-FREE ONLINE SECONDARY VOLTAGE
CONTROLLER DESIGN BASED ON EXPLICIT NN

In this section, we first use an integrator to transform the
output tracking problem of (5) into a stabilization problem
of its augmented system for fully eliminating the steady-
state error between DER output voltages and their setpoints.
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Fig. 2. The diagram of the proposed secondary voltage control structure based on the integrator and explicit NN. The upper part illustrates the online
implementation of the proposed control approach while the lower part shows the offline training procedure.

Then, an explicit NN-based controller is designed for online
implementation, while the time-consuming stability and safety
constraints are cast into the offline training of the NN.

A. Setpoint Tracking Control of DER Output Voltage

The MG secondary control problem is a setpoint tracking
problem, i.e., regulating the output voltages of DERs y to their
reference value yref with zero off-set. The original safe imi-
tation learning method in [31] was designed for stabilization
problems, i.e., regulating all the states to the equilibrium, and
the equilibrium is required to be all zero (origin). To extend
this method for stability and safety-constrained secondary
voltage control problem, we introduce the following integrator
which dynamically feeds back the integral of off-set

x̃I(k + 1) = x̃I(k) + ỹref − ỹ(k), (6)

where x̃I is the state vector of the integrator and ỹref is the
voltage setpoint vector to be tracked by ỹ. Then, the setpoint
tracking problem of (5) is transformed into a stabilization
problem of the following augmented system

x̃aug(k + 1) = Ax̃aug(k) + Bũaug(k), (7a)
ỹaug(k) = Cx̃aug(k) (7b)

where the augmented state vector is defined as x̃aug(k) ,[
x̃(k)− ˜̄x, x̃I(k)

]>
, ˜̄x = x̄−x∗ is the error between the new

equilibrium x̄ and the original equilibrium x∗, the control vec-
tor is augmented as ũaug(k) =

[
ũ(k)− ˜̄u

]
, ˜̄u is determined

by (9) and the augmented output vector ỹaug(k) = ỹ(k)−ỹref .
The augmented system matrices are derived as

A =

[
Amg 0n×m
−Cmg Im×m

]
,B =

[
Bmg

0

]
,C =

[
Cmg 0m×m

]
.

(8)

To achieve off-set free setpoint tracking, the steady-state values
˜̄x and ˜̄u should satisfy[

Amg − In×n Bmg

Cmg 0

] [
˜̄x
˜̄u

]
=

[
0

ỹref

]
. (9)

When the augmented system (7)-(9) is stabilized by a properly
designed ũaug(k), it is equivalent that: a) the small-signal
MG (5) is stabilized, i.e., the original MG (1) is locally
stable around the new equilibrium x̄, because x̃(k) − ˜̄x =
(x(k) − x∗) − (x̄ − x∗) = 0; b) the DER output voltages of
the original MG system (1), y(k) is regulated to the setpoint
yref with zero off-set, since ỹref − ỹ(k) = (yref − y∗) −
(y(k)− y∗) = x̃I(k + 1)− x̃I(k) = 0.

Definition 3: By defining H̃ = [H,0nS×m], the safe region
for the augmented system (7) is re-defined as

B̃ , {x̃aug(k) ∈ Rn+m | −x̃ub −H˜̄x 6 H̃x̃aug(k)

6 x̃ub −H˜̄x, ∀k, x̃ub > 0}. (10)

Definition 4: The corresponding SSR for the augmented
system (7) is re-defined as

S̃ , {x̃aug(0) ∈ B̃| lim
k→∞

φ̃(k; x̃aug(0)) = 0,

φ̃(k; x̃aug(0)) ∈ B̃,∀k} (11)

where x̃aug(0) is an initial value, and φ̃ denotes the solution
of the closed-loop system (7) with secondary controller ũaug.
When steady-state condition (9) holds, the safety constraint
(10) and SSR (11) of the augmented system (7) are equivalent
to (3) and (4) of the original system (1), respectively.

B. Secondary Controller based on Explicit NN

Stabilizing all the dynamics of (7) requires full-state feed-
back. Yet, full-state measurements are often unavailable in
practical MGs. Therefore, state observers are needed to esti-
mate the states by using input and output data only. For linear
system (7), the separation property holds, so that the state
observer and controller can be designed separately. Assume
that the system is detectable, i.e., unobservable modes are
stable, then it is simple to design a classical linear state
observer to obtain the estimated states ˆ̃x, which is used in
the following state feedback controller design.
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The feedback controller ũaug = U(ˆ̃xaug) is designed based
on an L-hidden-layer feedforward NN as

z0(k) = ˆ̃xaug(k), (12a)

zi(k) = ψi(γi(k)), (12b)

γi(k) = wizi−1(k) + bi, (12c)

ũaug(k) = γL+1(k) (12d)

where ˆ̃xaug(k) =
[
ˆ̃x(k)− ˜̄x, x̃I(k)

]>
is state feedback as

shown in Fig. 2; γi ∈ RNi and zi ∈ RNi are input/output
vectors of activation functions in the ith layer, respectively;
ψi : RNi → RNi is a vector collecting the activation functions
element-wisely; wi ∈ RNi×Ni−1 and bi ∈ RNi are weight
matrix and bias vector of the ith layer, respectively; Ni is the
number of neurons in the ith layer; i = 1, . . . , L.

The equilibrium x̃aug,∗ of system (7) with controller ũaug =
U(ˆ̃xaug) satisfies x̃aug,∗ = Ax̃aug∗ + BU(x̃aug,∗). To ensure
that x̃aug,∗ = 0, the controller should satisfy U(0) = 0, which
translates to a nonconvex constraint on (wi,bi). To solve
this problem, bi is set to zero as in [31], although it leads
to underuse of the NN and hence may limit the achievable
performance. It is still a challenging problem to develop a less
restrictive convex constraint that ensures U(0) = 0 without
setting bi = 0.

Our objective is to offline train the NN to imitate an
expert controller for stabilizing the augmented system (7)
while satisfying stability and safety constraints (10)-(11). Note
that the explicit NN-based controller (12) is a static function
such that its evaluation requires low computational cost and
simple hardware. Therefore, the well-trained explicit NN-
based controller can be conveniently implemented online.. The
overall control diagram is shown in Fig. 2.

For the ease of stability and safety analysis, we use the
method proposed in [31] to isolate the nonlinear activation
functions from the linear operations of the NN:[

ũaug(k)
Γ(k)

]
= W

[
ˆ̃xaug(k)
Z(k)

]
, (13a)

Z(k) = Ψ(Γ(k)) (13b)

where Ψ(Γ) =
[
ψ1(γ1)

>
, . . . ,ψL(γL)

>]>
: RNΨ → RNΨ ,

Γ =
[
γ1>, . . . ,γL>

]>
, Z =

[
z1>, . . . , zL

>
]>

are stacked-
up vectors of activation functions, their inputs and outputs,
respectively; NΨ =

∑L
i Ni is the total number of neurons;

the combined weight matrix

W =


0 0 0 . . . wL+1

w1 0 . . . 0 0
0 w2 . . . 0 0
...

...
. . .

...
...

0 0 . . . wL 0

 ,
[
Wue WuZ

WΓe WΓZ

]
.

(14)

Note that (13a) and (13b) are linear and nonlinear com-
ponents of the explicit NN-based controller (12). This de-
composition simplifies the derivation of stability and safety
constraints in the next section.
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Fig. 3. Illustration of local slope constraints on activation function tanh.
The shaded area is the safe region for slopes of an activation function.

IV. OFFLINE TRAINING OF NN WITH STABILITY AND
SAFETY CONSTRAINTS BASED ON IMITATION LEARNING

In this section, we first utilize local Lipschitzness of ac-
tivation functions to propagate safety constraints on states to
the explicit NN-based controller. Then, the stability and safety
constraints of the augmented system (7) with controller (12)
are derived based on Lyapunov theory and convexified using
loop transformation and similarity transformation. Finally, the
developed constraints are added into the offline NN training
based on imitation learning to achieve stable, safe, and fast
offset-free online secondary voltage control.

A. Safety Constraint Propagation

In the proposed explicit NN-based secondary voltage con-
troller, we adopt activation functions satisfying the following
local slope constraint,

kji 6
ψj
i (γji )− ψj

i (γj∗i)

γji − γ
j
∗i

6 k
j

i , ∀γ
j
i ∈ [γj

i
, γji ] (15)

for some slopes kji 6 k
j

i , where ψj
i denotes the ith activation

function in the jth layer. γj
i
6 γj∗i 6 γ

j
i is the an equilibrium

which can be obtained from Γ∗ = WΓex̃aug,∗+WΓZΨ(Γ∗).
If x̃aug,∗ = 0, then Γ∗ = 0. Consequently, the center of slope
constraint (15) is shifted to the origin as shown in Fig. 3(b).

Most widely-used activation functions are qualified such as
ReLU and tanh. As illustrated in Fig. 3, the existence of
slopes kji , and k

j

i are ensured by the local Lipshitzness of
the activation functions [32], [33].

By stacking up (15) with Γ∗ = 0, the local slope constraint
of the whole nonlinearity Ψ can be developed in the following
quadratic form[

Γ(k)
Z(k)

]> [ −2KKΛ (K + K)Λ
(K + K)Λ −2Λ

]
︸ ︷︷ ︸

,MK

[
Γ(k)
Z(k)

]
> 0 (16)

∀Γ(k) ∈ [Γ,Γ], where K = diag(k1, . . . , kNΨ
), K =

diag(k̄1, . . . , k̄NΨ
) are combined lower and upper bounds of

slopes, respectively; Λ = diag(λ1, . . . , λNΨ
) is a multiplier

matrix with λi > 0. Local slope constraint (16) establishes
the relation between inputs (MG states) and gradient of NN.
Using this relation, we can propagate the safety constraints on
states throughout the NN with the following steps:
Step 1: Find the smallest hypercube {x̃aug | x̃aug ∈
[x̃aug,lb, x̃aug,ub]} ⊃ B̃, where x̃aug,lb and x̃aug,ub are low-
er and upper bounds of x̃aug, respectively. Let [z0, z0] =
[x̃aug,lb, x̃aug,ub] and j = 0.
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Step 2: Let j = j+1. Denote wj
ik as the kth element in the ith

row of wj . Then, with (12c), the bounds of the ith activation
input in the jth layer can be computed by solving an convex
optimization problem [31], whose explicit solutions are

γ̄ji =
1

2
wj

i (zj−1+zj−1)+
1

2

Nj−1∑
k=1

∣∣∣wj
ik(zj−1

k −zj−1
k )

∣∣∣ , (17a)

γj
i

=
1

2
wj

i (zj−1+zj−1)− 1

2

Nj−1∑
k=1

∣∣∣wj
ik(zj−1

k −zj−1
k )

∣∣∣ . (17b)

Step 3: Letting K , INΨ
, then the slope of the ith activation

function in the jth layer is computed as

kji = min

{
ψj
i (γj

i
)− ψj

i (γj∗i)

γji − γ
j
∗i

,
ψj
i (γji )− ψ

j
i (γj∗i)

γji − γ
j
∗i

}
. (18)

Step 4: Calculate the bounds of activation outputs of the jth

layer as

zj = ψj(γj), zj = ψj(γj). (19)

Step 5: If j = L, stop; otherwise, return to Step 2.
With this propagation, the original safety bounds of the

states [−x̃ub − H˜̄x, x̃ub − H˜̄x] are transferred to the slope
bounds of the activation functions [K,K], such that the safety
constraint (10) can be alternatively satisfied in the offline
training process.

B. Lyapunov Stability Constraint

Although we considered a linearized MG model, nonethe-
less, the closed-loop system is still nonlinear due to the
substitution of a nonlinear explicit NN-based secondary volt-
age controller. Thus, instead of eigenanalysis, we will utilize
Lyapunov theory to develop the stability constraints.

According to Lyapunov second method, the origin of system
(7) with explicit NN-based controller (12) is an asymptotically
stable equilibrium point if there exists a Lyapunov function
V = x̃>augRx̃aug > 0 with some symmetric positive definite
matrix R ∈ Rn+m, such that

V (x̃aug(k + 1))− V (x̃aug(k)) =[
x̃aug(k)
ũaug(k)

]> [
A>RA−R A>RB

B>RA B>RB

]
︸ ︷︷ ︸

,MV

[
x̃aug(k)
ũaug(k)

]
< 0.

(20)

To combine the propagated safety constraint (16) with
Lyapunov stability constraint (20), we define the following
coordinate transformation [31],

[
x̃aug(k)
ũaug(k)

]
=

[
In+m 0(n+m)×NΨ

Wue WuZ

]
︸ ︷︷ ︸

,TV

[
x̃aug(k)
Z(k)

]
, (21)

[
Γ(k)
Z(k)

]
=

[
WΓe WΓZ

0NΨ×(n+m) INΨ

]
︸ ︷︷ ︸

,TK

[
x̃aug(k)
Z(k)

]
. (22)

Then, the overall stability and safety constraints are pro-
posed as the following theorem.

Theorem 1 (Stability and Safety): Select activation func-
tions of NN satisfying local slope constraint (16) for the safety
constraint (3) and denote the ith row of H̃ as H̃>i .

If there exist a symmetric positive definite matrix R and
positive semi-definite diagonal matrix Λ, such that

T>V MV TV + T>KMKTK ≺ 0, (23)

H̃>i R−1H̃i 6 (x̃∗ub,i − |H>i ˜̄x|)2, i = 1, . . . , nS , (24)

then, the proposed explicit NN-based secondary voltage
controller (12) can locally stabilize the MG system (1) at a
new equilibrium x̄ and regulate the DER output voltages to
the desired setpoints yref with zero offset at the steady state.

Moreover, it provides an inner-approximation of the SSR,
S̃ as the following ellipsoid,

Ω(R) , {x̃aug ∈ Rn+m | x̃>augRx̃aug 6 1}, (25)

such that any trajectories starting within Ω(R) will maintain
in it and converge to the equilibrium asymptotically.

The proof of Theorem 1 is given in Appendix A. The
stability and safety constraints (23)-(24) cannot be directly
used in the offline NN training because it is non-convex to
simultaneously solve for W, R and Λ. Thus, a convexification
procedure is carried out in the next subsection before applying
them to the training phase.

C. Convexification of Stability and Safety Constraints

We first normalize the slope bounds of nonlinearity Ψ̃ from
[K,K] to [−1,1] by using a loop transformation method as
shown in Fig. 4, which was proposed in [31]. Thus, the explicit
NN-based controller (13)-(14) is equivalently transformed as[

ũaug(k)
Γ(k)

]
= W̃

[
ˆ̃xaug(k)

Z̃(k)

]
, (26a)

W̃ =

[
W̃ue W̃uZ

W̃Γe W̃ΓZ

]
, (26b)

Z̃(k) = Ψ̃(Γ(k)). (26c)

The detailed derivation of W̃ is given in Appendix B. Let
[K,K] = [−1,1], the slope constraint (16) is equivalent to[

Γ(k)

Z̃(k)

]> [
Λ 0
0 −Λ

]
︸ ︷︷ ︸

,M̃K

[
Γ(k)

Z̃(k)

]
> 0, ∀Γ(k) ∈ [Γ,Γ]. (27)

Then, the stability constraint (23) is equivalently trans-
formed as

T̃>V MV T̃V + T̃>KM̃KT̃K ≺ 0, (28)

where

T̃V =

[
In+m 0(n+m)×NΨ

W̃ue W̃uZ

]
, T̃K =

[
W̃Γe W̃ΓZ

0NΨ×(n+m) INΨ

]
.
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𝐙 
++

+

++

Fig. 4. Diagram of loop transformation, where Θ1 = (K − K)/2 and
Θ2 = (K + K)/2.

The new stability constraint (28) is convex in R and Λ when
W̃ is known. However, NN training requires to simultaneously
search for R, Λ and W̃, which is still non-convex with (28).
For further convexification, (28) is written as the following
linear matrix inequalities (LMIs) using Schur complements

R 0 A> + W̃>
ueB> W̃>

Γe

0 Λ W̃>
uZB> W̃>

ΓZ

A + BW̃ue BW̃uZ R−1 0

W̃Γe W̃ΓZ 0 Λ−1

 � 0,

(29)

with R � 0, and Λ � 0. Define new decision variables as

D1 , R−1 � 0, D2 , Λ−1 � 0, (30)[
D3 D4

D5 D6

]
,

[
W̃ue W̃uZ

W̃Γe W̃ΓZ

] [
D1 0
0 D2

]
(31)

and left/right multiply (29) by diag (D1,D2, In+m+NΨ). Fi-
nally, it has

D1 0 D1A
> + D>3 B> D>5

0 D2 D>4 B> D>6
AD1 + BD3 BD4 D1 0

D5 D6 0 D2

 � 0.

(32)

The new stability constraint (32) is now convex in the
decision variables D = {D1, . . . ,D6}. Note that the original
variables (R,Λ,W̃) can be retrieved from (30) and (31).
Thus, (32) enables us to simultaneously search for (R,Λ,W̃)
by seeking D instead.

Moreover, to bound the ROA into safety constraint, (24) can
be directly rewritten as a convex constraint on D1:

H̃>i D1H̃i 6 (x̃∗ub,i − |H>i ˜̄x|)2, i = 1, . . . , nS . (33)

D. NN Training based on Imitation Learning

The proposed explicit NN-based secondary voltage con-
troller aims to imitate an expert control method under the
premise of satisfying stability and safety constraints. Thus,
the NN training is formulated as a constrained optimization
problem as follows,

min
W,D

η1

Nt

Nt∑
j=1

‖U(x̃∗aug,j ,W)−U∗j‖ − η2log det(D1) (34a)

s.t. LMIs (30)− (33) (34b)

where the first term in the objective function (34a) represents
the training loss, Nt is the total number of training data
pairs. The training inputs x̃∗aug and training outputs U∗ are
generated by the expert controller to be imitated; the second
term denotes the volume of the approximated SSR Ω(R)
that is proportional to det(D1); η1, η2 > 0 are weighting
parameters. The inequalities (30), (32) and (33) are stability
and safety constraints on D, while the equality constraint (31)
bridges W and D, since W̃ is a nonlinear function of W.

Problem (34) is a two-objective constrained optimization
problem. The two objectives are separable and defined on
uncoupled convex sets. Moreover, the equality constraint (31)
can be used to connect the two subproblems. Thus, we adopt
the ADMM used in [26] to solve (34). To use ADMM, an
augmented Lagrangian function is first established as:

La(W,D,Y) =
η1

Nt

Nt∑
j=1

‖U(x̃∗aug,j ,W)−U∗j‖

−η2log det(D1) + tr(Y>E) +
ρ

2
‖E‖2F (35)

where Y ∈ R(m+NΨ)×(n+m+NΨ) is the Lagrangian multipli-
er, ‖ · ‖F represents the Frobenius norm, ρ > 0 is the penalty
parameter and

E =

[
D3 D4

D5 D6

]
− W̃

[
D1 0
0 D2

]
(36)

Then (34) can be solved with the following iterative steps:
Step 1: Update W with gradient-based methods by solving

Wi+1 = arg min
W
La(Wi,Di,Yi) (37)

Step 2: Update D with semi-definite programming methods
by solving

Di+1 = arg min
D
La(Wi+1,D,Yi)

s.t. LMIs (30), (32)and (33) (38)

Step 3: If ‖Ei+1‖F 6 σ, where σ > 0 is the stopping
tolerance, then (34) has been solved with a converged result,
and stop the training. Otherwise, update Y with the following
equation and return to Step 1:

Yi+1 = Yi + ρEi+1. (39)

Note that problem (34) is non-convex, thus the ADMM
cannot guarantee a global optimum, but can obtain a local
optimum. Nonetheless, the paramount task of offline training is
to satisfy stability and safety constraints. Once the closed-loop
augmented system (7) with the explicit NN-based controller
is stabilized, the online controller based on the integrator will
automatically eliminate the steady-state errors as illustrated by
Theorem 1. As a result, any converged solutions or even local
optima are acceptable in the training phase. The overall offline
training algorithm proposed in the section is concluded in Fig.
5.
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Fig. 5. Flowchart of the offline training approach based on imitation learning.
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Fig. 6. Diagram of test MG system.
TABLE I

MG PARAMETERS

Par. Value Par. Value
Uod [380.8, 381.8, 380.4] Uoq [0, 0, 0]

Iod [11.4, 11.4, 11.4] Ioq [0.4,−1.45, 1.25]

Initial Ild [11.4, 11.4, 11.4] Ilq [−5.5,−7.3,−4.6]

conditions Ubd [379.5, 380.5, 379] Ubq [−6,−6,−5]

ω0 314 δ0 [0, 0.0019,−0.0113]

Iline1d -3.8 Iline1q 0.4
Iline2d 7.6 Iline2q -1.3

Network rline1 0.23 Ω xline1 0.1 Ω

and rline2 0.35 Ω xline2 0.58 Ω

Load rload1 25 Ω xload3 20 Ω

DER The DER parameters can be found in [27]

V. CASE STUDIES

A. Simulation Setup

A widely used 220 V (per phase RMS) prototype MG with
three inverter-based DERs is adopted as shown in Fig. 6 [27].
Since this is a low-voltage distribution system, the network
is resistance dominated. The parameters are given in Table I.
All three DERs are equally rated (10 kVA), especially with
the same droop gain, such that they can share the load power
equally. Without secondary control, the initial voltage setpoint
in primary control for each DER is given as useti = 380 V,
leading to steady-state errors in DER output voltages Uod at
the initial operating point. All the dynamic simulations are
conducted in MATLAB and Python environments.

The secondary controller is established as a feedforward NN
with 2 hidden layers. Each layer has N1 = N2 = 40 neurons

Fig. 7. Voltage regulation performance of the proposed secondary controller.

with tanh as the activation functions. The hyperparameters
of the NN are tuned through cross-validation. The expert
controller is selected as the linear quadratic regulator (LQR),
which has been widely used as an optimal control method
in practical engineering due to its rapid transient response
and ability to provide an inner approximation of ROA [26].
Considering discrete-time system (7), and performance index

J =
∞∑
k=0

(x̃>aug(k)Q̃x̃aug(k) + ũ>aug(k)R̃ũaug(k),

the optimal control law minimizing J is derived as

ũaug(k) = −(R̃ + B>P̃B)−1B>P̃Ax̃aug(k), (40)

where P̃ is the unique positive definite solution to the
following discrete-time algebraic Riccati equation

P̃ = A>P̃A−A>P̃B(R̃ + B>P̃B)−1B>P̃A + Q̃.

According to a uniform distribution, 1×106 state vectors x̃aug

are randomly produced as the training inputs. Then, by using
the LQR control law (40), one can obtain the corresponding
control signals ũaug of the expert controller as the training
outputs. The learning rate is designed as 1 × 10−3/(1 + 3 ×
epoch/nepoch), where nepoch is the total number of epochs
[31]. The penalty parameter ρ = 1. The weighting parameters
for imitation accuracy and volume of SSR are initially selected
as η1 = 100 and η2 = 5, respectively, which means the control
performance is considered as a more important factor. The
training algorithm based on ADMM is terminated at the 38th

iteration with ‖E‖F = 1.35.

B. Voltage Regulation Performance

We consider safety bounds on the DER output voltages as
380 × (1 ± 5%) V. As shown in Fig. 7, without secondary
control, there exist steady-state errors between DER output
voltages and their setpoints 380 V. After 1 s, the proposed
secondary controller is activated and the steady-state errors are
fully eliminated rapidly and safely. The blue ellipsoid in Fig. 8
shows the SSR calculated by the proposed method, which is an
inner approximation of ROA bounded by the safety constraints
(yellow cube). The phase plot of the trajectory of uod shows
that output voltages cannot escape the SSR anytime.

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2023.3239548

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9

Fig. 8. Approximated SSR and trajectory of DER output voltages. (a) is 3D
illustration of the SSR; (b)-(d) show the 2D projections of (a).

Fig. 9. Comparison of DER output voltage regulation performances of the
proposed method with different weighting factors.

Fig. 10. Comparison of approximated SSR with different weights and ROA
approximated by LQR. (a) is 3D illustration of the SSR; (b)-(d) show the 2D
projections of (a).

C. Influence of Weighting Parameters

To test the influence of weighting factors in (34a), we fix
η1 = 100 and change η2 to 20. As shown in Fig. 9, the
controller with smaller η2 has faster transient response but
larger overshooting, which means it is more closed to the
expert controller and focuses more on control performance.
In contrast, larger η2 leads to a more sluggish response speed
but safer overshooting. Figure 10 shows that increasing η2 can
significantly enlarge the estimation of SSR.

D. Ability of Handling Other State Constraints

The proposed method can handle linear inequality con-
straints of any controllable state variables in the form of Eq.
(3). To validate this, case studies with state constraints on
both DER output currents iod and voltages vod are conducted
as an example. Specially, unlike DER output voltages that
need to be maintained at a certain level for safe operation, the
steady-state values of output currents are regulated according
to the loading condition, such that they usually have a much
larger variation range. Therefore, the current constraints in
this case study are set as [0.75̄iod, 1.25̄iod], where the new
steady-state value īod is computed via Eq. (9) and η2 = 20.
The SSR from the viewpoint of iod is shown in Fig. 11.
We can see the SSR is successfully bounded by the current
constraints and an initial point starting within the SSR finally
converges to the new equilibrium. Figure 12 compares the
current trajectories with voltage constraints only and with
both voltage and current constraints. As shown in the figure,
by considering current constraints in the proposed secondary
control method, the currents can be bounded within the safe
range. It should be mentioned that all the bounds are flexible to
be changed according to the practical engineering requirement.
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Fig. 11. Approximated SSR from the viewpoint of DER output currents
subject to both voltage and current constraints. (a) is 3D illustration of the
SSR; (b)-(d) show the 2D projections of (a).

The influence on DER output voltage induced by considering
current constraints is also studied. As shown in Fig. 13, the
SSR of DER output voltage has unsurprisingly shrunk by
adding current constraints.

E. Comparison Case Studies

The proposed method is compared with the expert LQR
controller and the conventional constrained MPC method. The
configuration of LQR remains the same as Section V-A. As
for the MPC, we consider safety constraints (3) and terminal
stability constraints. The constrained optimization problem is
solved at each time step as a quadratic programming (QP)
problem. As shown in Fig. 14, the LQR method though has
the fastest transient response velocity, nonetheless, it violates
the safety bound during the transient. While the MPC method
and the proposed method always satisfy the safety condition.

The comparison of computational time is shown in Fig.
15. Note that the y-axis is scaled logarithmically, and the
computational time of LQR and the proposed method is much
lower than that of the MPC. This is because, evaluating
control signal ũaug(k) of the proposed method and LQR
method at each time step only requires performing several
multiplications, additions and evaluating activation functions
(required by the proposed method only). In contrast, the MPC
needs to solve a QP problem at each time step, which is
significantly more time-consuming. The high computational
cost leads to two problems. Firstly, it can result in time delays
when the computational time at each time step is larger than
the sampling time of the secondary control signal as shown
in Fig. 15. Secondly, solving the QP problem requires more
expensive hardware than simply evaluating a static function.

Figure 10 shows that the SSR approximated by the proposed
method is much larger than the ROA approximated by LQR.

Fig. 12. Comparison of DER output currents with and without current
constraints.

Fig. 13. Approximated SSR from the viewpoint of DER output voltages
subject to both voltage and current constraints. (a) is 3D illustration of the
SSR; (b)-(d) show the 2D projections of (a).
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Fig. 14. Comparison of DER output voltage regulation performances of
MPC, LQR and the proposed explicit NN-based method.

Fig. 15. Computational time of MPC, LQR and the proposed explicit NN-
based method.

This is because our training objective is also designed to max-
imize the volume of SSR as illustrated in (34a). It also shows
that increasing the weighting parameter η2 can significantly
enlarge the volume of the approximated SSR. The conven-
tional MPC cannot directly provide a ROA approximation, so
it is not compared in this aspect. It is worth noting that, all
the SSR and ROA here are inner approximations of the real
ones which are usually difficult to be accurately obtained.

F. Anti-disturbance Performance

To test the anti-disturbance performance of the proposed
secondary voltage control method, a disturbance term is added

Fig. 16. Comparison of anti-disturbance performances of MPC, LQR and
the proposed explicit NN-based method with different weighting factors.

to (5) which is equivalent to connecting a controlled current
source in parallel to Load 1 [27]. After the system is regulated
to the steady state by secondary control, a large disturbance
with 25 A current is injected to bus 1 at 2.5 s. The dynamic
responses of MPC, LQR and the proposed explicit NN-based
method are shown in Fig. 16. We can observe that the
output voltage of DER1 is most influenced since it is closest
to the disturbance. The proposed method has overall better
robustness than MPC and LQR methods.

VI. CONCLUSIONS

This paper proposed a novel secondary voltage control
method that can guarantee the transient stability and safety of
microgrids (MGs). The explicit neural network (NN) enables
casting the time-consuming stability and safety-constrained
optimization problem into the offline training phase by lever-
aging local Lipschitzness of activation functions, such that
the trained explicit NN-based controller is fast enough to
be implemented online. Moreover, the proposed method can
also provide a large inner approximation of the stable region,
within which the trajectories of MG will be bounded by safety
constraints and converge to the equilibrium asymptotically.
Comparison case studies have been carried out to validate the
effectiveness and show the advantages of the method.

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2023.3239548

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



12

The future work will extend the proposed approach for
nonlinear MG models. To control transient states, a nonlinear
state observer is required to estimate the MG states. The main
challenge is aroused by the violation of separation property
due to the coupling between the MG dynamics and nonlinear
state observer, which leads to difficulties in deriving and
convexifying transient stability and safety constraints.

APPENDIX

A. Proof of Theorem 1

By using Lemma 1 in [34], (24) enforces the ROA Ω(R)
into the safety region B̃, i.e.,

Ω(R) ⊆{x̃aug | |H̃>i x̃aug| 6 x̃ub,i − |H>i ˜̄x|, i = 1, . . . , nS}
⊆{x̃aug ∈ Rn+m | −x̃ub,i −H>i ˜̄x 6 H̃>i x̃aug

6 x̃ub,i −H>i ˜̄x, i = 1, . . . , nS} = B̃, (41)

such that, if x̃aug(k) ∈ Ω(R) ⊆ B̃, then Γ(k) ∈ [Γ,Γ] and
thus (16) holds.

Then, multiply [x̃aug(k)>,Z>(k)] and [x̃aug(k)>,Z>(k)]>

at left and right sides of (23), respectively, it has

V (x̃aug(k + 1))− V (x̃aug(k)) +

[
Γ(k)
Z(k)

]>
MK

[
Γ(k)
Z(k)

]
< 0.

For any x̃aug(k) ∈ Ω(R), the last term of (42) is non-
negative, thus V (x̃aug(k + 1)) − V (x̃aug(k)) < 0. By Lya-
punov theory, any trajectory originating in Ω(R) converges
to the origin asymptotically, i.e., limk→∞ x̃aug(k) = 0. This
indicates that Ω(R) is a ROA and an invariant set [31]. Recall
that Ω(R) ⊆ B̃, so Ω(R) is an inner approximation of SSR
(11).

Finally, it follows in the steady state that,

lim
k→∞

x̃(k) = ˜̄x⇒ lim
k→∞

x(k) = x∗ + ˜̄x, (42)

lim
k→∞

x̃I(k) = 0⇒ lim
k→∞

ỹ(k) = ỹref

⇒ lim
k→∞

y(k) = yref (43)

for any initial values satisfying x̃aug(0) ∈ Ω(R). �

B. Derivation of Loop Transformation

From Fig. 4, we can obtain

Z(k) = Θ1Z̃(k) + Θ2Γ(k), (44)

Substitute (44) into (13) yields,

ũaug(k) = Wue
ˆ̃xaug(k) + WuZΘ1Z̃(k) + WuZΘ2Γ(k),

(45)

Γ(k) = WΓe
ˆ̃xaug(k) + WΓZΘ1Z̃(k) + WΓZΘ2Γ(k).

(46)

Solve (46) for Γ(k), then we have

Γ(k) = (I−WΓZΘ2)−1WΓe︸ ︷︷ ︸
W̃Γe

ˆ̃xaug(k)

+ (I−WΓZΘ2)−1WΓZΘ1︸ ︷︷ ︸
W̃ΓZ

Z̃(k). (47)

Substitute (47) into (45), it has

ũaug(k) =
[
Wue + WuZΘ2(I−WΓZΘ−1

2 )WΓe

]︸ ︷︷ ︸
W̃ue

ˆ̃xaug(k)

+ WuZ

[
I + Θ2(I−WΓe)−1WΓZ

]
Θ1︸ ︷︷ ︸

W̃uZ

Z̃.

(48)

From the subscripts of (47)-(48), we can obtain

W̃ =

[
W̃ue W̃uZ

W̃Γe W̃ΓZ

]
. (49)

REFERENCES

[1] J. C. Vasquez, J. M. Guerrero, J. Miret, M. Castilla, and L. G. de Vicua,
“Hierarchical control of intelligent microgrids,” IEEE Ind. Electron.
Mag, vol. 4, no. 4, pp. 23–29, Dec. 2010.

[2] B. Chen, J. Wang, X. Lu, C. Chen, and S. Zhao, “Networked microgrids
for grid resilience, robustness, and efficiency: A review,” IEEE Trans.
Smart Grid, vol. 12, no. 1, pp. 18–32, 2021.

[3] Y. Du, X. Lu, B. Chen, and F. Lin, “Resiliency augmented hybrid ac and
dc distribution systems with inverter-dominated dynamic microgrids,”
IEEE Trans. Smart Grid, 2022, early access. doi: 10.1109/TSG.2022.
3144976.

[4] Q. Zhang, Z. Ma, Y. Zhu, and Z. Wang, “A two-level simulation-
assisted sequential distribution system restoration model with frequency
dynamics constraints,” IEEE Trans. Smart Grid, vol. 12, no. 5, pp. 3835–
3846, Sept. 2021.

[5] Z. Ma, Z. Wang, Y. Guo, Y. Yuan, and H. Chen, “Nonlinear multiple
models adaptive secondary voltage control of microgrids,” IEEE Trans.
Smart Grid, vol. 12, no. 1, pp. 227–238, Jan. 2021.

[6] A. Bidram and A. Davoudi, “Hierarchical structure of microgrids control
system,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1963–1976, Dec.
2012.

[7] J.-B. Bouvier, S. P. Nandanoori, M. Ornik, and S. Kundu, “Distributed
transient safety verification via robust control invariant sets: a micro-
grid application,” 2022, arXiv. doi: https://doi.org/10.48550/arXiv.2202.
09320.

[8] A. Maulik and D. Das, “Stability constrained economic operation of
islanded droop-controlled dc microgrids,” IEEE Trans. Sustain. Energy,
vol. 10, no. 2, pp. 569–578, Apr. 2019.

[9] J. Schiffer, R. Ortega, A. Astolfi, J. Raisch, and T. Sezi, “Conditions
for stability of droop-controlled inverter-based microgrids,” Automatica,
vol. 50, no. 10, pp. 2457–2469, Oct. 2014.

[10] S. Kundu and K. Kalsi, “Transient safety filter design for grid-forming
inverters,” in 2020 American Control Conference (ACC), 2020, pp.
1299–1304.

[11] J. W. Simpson-Porco, Q. Shafiee, F. Drfler, J. C. Vasquez, J. M. Guerrero,
and F. Bullo, “Secondary frequency and voltage control of islanded mi-
crogrids via distributed averaging,” IEEE Trans. Ind. Electron., vol. 62,
no. 11, pp. 7025–7038, Nov. 2015.

[12] Y. Du, X. Lu, J. Wang, and S. Lukic, “Distributed secondary control
strategy for microgrid operation with dynamic boundaries,” IEEE Trans.
Smart Grid, vol. 10, no. 5, pp. 5269–5282, Sept. 2019.

[13] V. Nasirian, Q. Shafiee, J. M. Guerrero, F. L. Lewis, and A. Davoudi,
“Droop-free distributed control for ac microgrids,” IEEE Trans. Power
Electron., vol. 31, no. 2, pp. 1600–1617, 2016.

[14] S. M. Mohiuddin and J. Qi, “Optimal distributed control of ac microgrids
with coordinated voltage regulation and reactive power sharing,” IEEE
Trans. Smart Grid, 2022, early access. doi: 10.1109/TSG.2022.3147446.

[15] T. Qian, Y. Liu, W. Zhang, W. Tang, and M. Shahidehpour, “Event-
triggered updating method in centralized and distributed secondary
controls for islanded microgrid restoration,” IEEE Trans. Smart Grid,
vol. 11, no. 2, pp. 1387–1395, Mar. 2020.

[16] A. Bidram, A. Davoudi, F. L. Lewis, and J. M. Guerrero, “Distributed
cooperative secondary control of microgrids using feedback lineariza-
tion,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3462–3470, Aug.
2013.

[17] A. Bidram, A. Davoudi, and F. L. Lewis, “A multiobjective distributed
control framework for islanded AC microgrids,” IEEE Trans. Ind.
Informat., vol. 10, no. 3, pp. 1785–1798, Aug. 2014.

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2023.3239548

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10.1109/TSG.2022.3144976
10.1109/TSG.2022.3144976
https://doi.org/10.48550/arXiv.2202.09320
https://doi.org/10.48550/arXiv.2202.09320
10.1109/TSG.2022.3147446


13

[18] A. Maulik and D. Das, “Stability constrained economic operation of
islanded droop-controlled dc microgrids,” IEEE Trans. Sustain. Energy,
vol. 10, no. 2, pp. 569–578, Apr. 2019.

[19] S. P. Nandanoori, S. Kundu, W. Du, F. K. Tuffner, and K. P. Schneider,
“Distributed small-signal stability conditions for inverter-based unbal-
anced microgrids,” IEEE Trans. Power Syst., vol. 35, no. 5, pp. 3981–
3990, Sept. 2020.

[20] P. Vorobev, P.-H. Huang, M. Al Hosani, J. L. Kirtley, and K. Turitsyn,
“High-fidelity model order reduction for microgrids stability assessmen-
t,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 874–887, Jan. 2018.

[21] Y. Khayat, Q. Shafiee, R. Heydari, M. Naderi, T. Dragievi, J. W.
Simpson-Porco, F. Drfler, M. Fathi, F. Blaabjerg, J. M. Guerrero, and
H. Bevrani, “On the secondary control architectures of ac microgrids: an
overview,” IEEE Trans. Power Electron., vol. 35, no. 6, pp. 6482–6500,
Jun. 2020.

[22] K. Ahmed, M. Seyedmahmoudian, S. Mekhilef, N. M. Mubarak, and
A. Stojcevski, “A review on primary and secondary controls of inverter-
interfaced microgrid,” J. Mod. Power Syst. Clean Energy, vol. 9, no. 5,
pp. 969–985, Sept. 2021.

[23] T. Zhao, J. Wang, and X. Lu, “An MPC-aided resilient operation of
multi-microgrids with dynamic boundaries,” IEEE Trans. Smart Grid,
vol. 12, no. 3, pp. 2125–2135, May 2021.

[24] S. Kundu, S. Geng, S. P. Nandanoori, I. A. Hiskens, and K. Kalsi,
“Distributed barrier certificates for safe operation of inverter-based
microgrids,” in 2019 American Control Conference (ACC), 2019, pp.
1042–1047.
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robust neural networks using lipschitz bounds,” IEEE Contr. Syst. Lett.,
vol. 6, pp. 121–126, 2021.

[27] N. Pogaku, M. Prodanovic, and T. C. Green, “Modeling, analysis and
testing of autonomous operation of an inverter-based microgrid,” IEEE
Trans. Power Electron., vol. 22, no. 2, pp. 613–625, Mar. 2007.
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