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Abstract—Advanced Metering Infrastructure (AMI) enables
utilities to gather vast amount of smart meter (SM) data, which
can facilitate demand-side control, fault detection, and system
monitoring. However, due to the bottlenecks caused by the bur-
densome data transmission and storage, taking full advantage of
SM measurements is challenging. In response to this problem, this
paper presents a deep convolutional autoencoder (DCA)-based
data compression method to significantly reduce the volume of
SM data while providing an efficient way to restore the original
data for various power system applications. The temporal-spatial
correlations within SM data are exploited in our method to
enhance DCA performance. Further, a sensitivity analysis is
conducted to obtain a tradeoff between the data compression
ratio and reconstruction error. The proposed method has been
tested and verified using real utility data.

Index Terms—Deep convolutional autoencoder, data compres-
sion, smart meter, temporal-spatial correlation.

I. INTRODUCTION

Advanced metering infrastructure (AMI) in distribution sys-
tems enables bidirectional information flow between utilities
and customers, and collects fine-grained electricity consump-
tion data from smart meters (SMs). According to the statistical
data from the United States Energy Information Adminis-
tration (EIA), more than 70 million SMs were installed in
2016 [1]. As the number of SMs increases, massive real-time
data provides valuable knowledge of customer behaviors to
utilities. However, utilities are still facing critical challenges
in managing big data. For the small-to-medium-sized utilities
that have thousands of customers, the total amount of SM data
with 15-minute resolution can reach tens of terabyte (TB) per
year, which causes a heavy burden in data transmission and
storage [2]. Hence, it is imperative to develop efficient data
compression models to alleviate transmission pressure, reduce
storage overhead, and enhance data analysis [2].

Existing data compression studies in power systems can be
classified into two categories: lossless vs. lossy algorithms. As
the name suggests, lossless methods can completely restore
all original data from the compressed data without loss of
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information. In [3], a wavelet pack transform method is pro-
posed for denoising and compression of the metering data. In
[4], the compressibility of several standard lossless algorithms
is compared using the voltage and frequency data collected
by the phasor measurement units (PMUs). However, the main
drawback of lossless algorithms is that these methods have
much lower compression ratios (CRs) than lossy models. CR
is a critical metric for evaluating the performance of data
compression algorithms, and is computed by dividing the
size of the original data by the size of the compressed data
[5]. In addition, the running times of lossless algorithms are
longer than lossy approaches, thus leading to high costs in
online implementation [2]. In the lossy compression methods,
parts of the information are lost in the data recovery. In
[5], a singular value decomposition (SVD)-based method is
developed to reduce the volume of PMU data. In [6], a feature-
based data compression method is proposed by identifying and
restoring hidden load features rather than the original data
values. In [7], a principal component analysis (PCA)-based
algorithm is proposed to compress PMU data on a distribution
network. One shortcoming of lossy compression methods is
their sensitivity to the rapid changes in the volatile SM data.
Thus, compression of house-level SM data is still a challenging
problem.

To tackle the above shortcomings, a deep convolutional
autoencoder (DCA)-based lossy method is proposed to obtain
a compressed low-dimensional representation of house-level
SM data of distribution grids. This allows utilities to handle
the challenges posed by data transmission and storage. Unlike
previous lossy approaches, the proposed method is capable of
extracting hierarchical features of data using multiple hidden
layers of deep learning models, thus, improving the quality
of data compression. Also, the testing time of deep learning-
based data compression methods is generally shorter than
that of conventional methods, which is beneficial for on-
line data processing. To circumvent the high parametric com-
plexity of deep learning methods, convolution operation and
parameter sharing scheme are utilized to reduce the number
of parameters. Further, our method takes into account the
temporal relationship of customer consumption data and the
spatial correlation between the voltages of nearby customers to
improve DCA performance. Based on the case study with real
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data, it is demonstrated that the proposed method can achieve
lower restoring errors with given compression ratios compared
to the existing approaches.

II. DATA DESCRIPTION AND OVERALL STRUCTURE OF
THE PROPOSED METHOD

A. Description of real SM data and data pre-processing

In this paper, the available SM data contains several U.S.
mid-west utilities’ hourly electricity consumption and voltage
data for over 6000 customers [8]. The dataset includes around
four-year energy measurements in kWh, from January 2015 to
May 2018 and 16 months of voltage data in volt, from January
2017 to May 2018. Also, the geographical information of each
SM (i.e., longitude and latitude) is included in our dataset.
Over 95% of customers are residential and commercial loads,
which have more various load patterns compared to industrial
customers [9].

The data is initially processed through the data pre-
processing. The goal of the data pre-processing is twofold: 1)
perform data cleaning to mitigate missing and bad data prob-
lems caused by communication failure and meter malfunction.
The missing and bad data are detected using the z-score [10].
The samples with z-scores outside a range of ±5 are replaced
by interpolation. 2) conduct min-max data normalization to
perform standardization by rescaling the data to the range [0, 1]
[11].

B. Overall Data Compression Approach

The overall framework is presented in Fig. 1. Considering
the rapidly fluctuating consumption behaviors of individual
customers, a deep learning technique, DCA, is leveraged to
perform SM data compression and reconstruction. After data
pre-processing (see the previous subsection), a data trans-
formation algorithm is applied to reshape the data into 2-
dimensional image formats while capturing the temporal rela-
tionship of customer consumption and the spatial correlation
between the voltages of nearby customers. Next, these data
images are served as the training inputs of different DCAs.
Each DCA is composed of two modules, corresponding to an
encoder and a decoder, respectively. The encoder is utilized
to discover the latent data features from energy/voltage data
images and embed these features into a low-dimensional space,
which is called embedded feature. In contrast, the decoder
is tuned to reconstruct the original data from the embedded
feature through the minimization of a cost function while pro-
viding an efficient way to perform data reconstruction. Taking
into account that the DCA model is a complex structure, we
have applied a random search strategy to calibrate the hyper-
parameters of DCAs [12]. After training model, embedded
features of the encoder have a much lower dimensionality
compared to the original data and can be transmitted and
restored efficiently. Finally, a sensitivity analysis is conducted
to obtain an adequate trade-off between the CR and recon-
struction error.
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Fig. 1: The flowchart of the proposed model.

III. DCA-BASED SM DATA COMPRESSION AND
RECONSTRUCTION

In order to develop an efficient SM data compression
method that achieves high CR while maintaining excellent
fidelity, we propose a DCA-based approach by adopting the
recently-developed deep learning technique. Let phi and vhi
denote the historical energy and voltage data sample expressed
at time index h recorded by the i’th SM, respectively. Due
to the consistency of customer behavior, it is important to
discover the temporal relationship between consecutive energy
data samples. To conduct this, a method is developed to choose
an optimal time-window for energy data compression, consid-
ering the tradeoff between the window length and CR; a small
data window cannot contain sufficient temporal information,
thus resulting in a poor CR. Inversely, a large data window
indicates long execution time and high parametric complexity.
Here, the length of window is selected as 672 hours, which
contains the load data of each customer for a period of 28 days,
PiPiPi(j) = [p

1+672×(j−1)
i , ..., p672×ji ], where j is the index of

the energy load profile. Then, each load profile data, PiPiPi(j), is
converted to a 2-dimensional energy image, PIPIPI(j) ∈ R28×24.
Using these energy images, an energy-based DCA is trained
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Fig. 2: DCA-based SM data compression and reconstruction.
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Fig. 3: Illustration of convolution, max pooling, transposed
convolution, and max unpooling.

to perform data compression and reconstruction.
Voltage measurement of single SM is not only determined

by the corresponding load but also impacted by the rest of
loads at the same feeder, which indicates existence of spatial
correlation. Thus, to exploit this spatial correlation of voltages,
SMs that belong to the same feeders are clustered into a
single training set; the distances from SMs to the substation
are calculated. At each time h, the voltage data samples in
feeder k are organized in the descending order with respect to
these distances. Then, the sorted voltage data is transformed
into a 2-dimensional voltage image, Vk,IVk,IVk,I(h) ∈ RA×B , where
A and B are determined by the size of feeders. Note that
for both voltage and energy data the phase information can
be preserved by training different DCAs for each phase
separately.

As an unsupervised learning algorithm, DCA consists of an
encoder-decoder paradigm and convolutional neural networks
(CNNs). Here, our proposed model includes multiple layers
(see Fig. 2), such as convolutional layers, pooling layers,
fully-connected layers, transposed convolutional layers and
unpooling layers. The objective function of the energy/voltage-
based DCA is to minimize the reconstruction error as follows:

min
W ′W ′W ′,b′b′b′,WWW,bbb

1

n

n∑
z=1

||DW ′W ′W ′,b′b′b′(EWWW,bbb(xz))− xz||22 (1)

where, n is the number of data samples, xz is the z’th
data samples that can be PIPIPI(j) or Vk,IVk,IVk,I(h), EWWW,bbb(·) and

DW ′W ′W ′,b′b′b′(·) are the mathematical models for the deep con-
volutional encoder and decoder, and {WWW,bbb} and {W ′W ′W ′, b′b′b′}
are the parameters of the encoder and decoder, respectively.
The purpose of the encoder and the decoder is to perform
data compression and reconstruction, respectively. Compared
with the conventional artificial neural networks (ANNs), the
proposed encoder not only has the typical fully-connected
layer but also adopts the convolutional and pooling layers
[13]. Specifically, the function of convolutional layer can be
mathematically described as follows [14]:

φfg = σ(
∑
l∈L

xlg−1 ∗W f
g + bfg ) (2)

where, φfg is the latent representation of the f ’th feature map
of the g’th layer, σ is a nonlinear activation function (e.g.,
sigmoid, hyperbolic tangent, or parametric rectified linear unit
(PReLU)), xlg−1 is the l’th feature map of the previous layer,
L is the total number of feature maps, W f

g and bfg are the
kernel filter and the bias of the f ’th feature map of the g’th
layer, respectively. Here, due to the 2-dimensional energy and
voltage data images, convolution operation ∗ can be written
as follows [11]:

(xlg−1∗W f
g )(i, j) =

L−1∑
δi=0

L−1∑
δj=0

xlg−1(i−δi, j−δj)W f
g (i, j) (3)

where, i and j are the row and column indices of the
data image. Thus, each location of the input data xlg−1 is
processed by the kernel filter W f

g . The convolution process is
determined by two types of parameters: horizontal and vertical
strides, which represent the amount of movement between
applications of the kernel filter to the feature map, are set
to 1. Thus, the size of the output feature can be calculated
as: φfg ∈ R(m−n+1)×(m−n+1), where the sizes of xlg−1 and
W f
g are m×m and n×n, respectively. This indicates that the

feature map shrinks in every convolutional layer. Furthermore,
the impact of the data sample located on the border of data
image is much smaller than those in the center, which results
in information loss. To tackle this problem, a padding strategy
is utilized by adding an additional border to the feature maps
[15].

The outcomes of g’th convolutional layer are served as
the inputs of a max-pooling layer. This layer pools features
by taking the maximum value of input, which reduces the
width and height of feature maps based on the size of pooling
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kernel [14]. In the pooling layer, switch variables are stored
to describe the positions of these max-pooled features that can
provide useful information in the reconstruction step. Through
the processes of multiple convolutional and pooling layers,
the original information is transformed into the embedded
features, which has a much lower dimension than the original
data.

Then, the decoder is developed to restore the original data
using the outputs of the encoder, which includes the fully-
connected, transposed convolutional, and unpooling layers.
In general, as shown in Fig. 3, the functions of the trans-
posed convolutional and unpooling layers are the opposite of
convolutional and pooling layers. Specifically, a transposed
convolutional layer carries out a regular convolution operation
but reverts its spatial transformation. This indicates that the
transposed convolutional layer can be thought of as the gradi-
ent of convolution with respect to its input [16]. Owing to the
non-invertible property of pooling strategy, the unpooling layer
can be considered as an approximate inverse by identifying the
switch variables to record the locations of the maxima within
each pooling region [17]. Using the transposed convolutional
and unpooling layer, the decoder is capable of restoring
the compressed representation into the original data, which
achieves data reconstruction. One notable advantage of DCA
is the reduction in the number of parameters, thus handling
the parametric complexity challenge of deep learning-based
methods. The rationale behind this is using convolutional
layers besides conventional fully-connected layers. In addition,
as shown in Fig. 3, the neurons within a particular feature map
of the DCA share the same weights, which further contributes
to reducing the parametric complexity.

For each DCA, the dataset is randomly partitioned into three
subsets for training (70% of the total data), validation (15% of
the total data), and testing (15% of the total data). To calibrate
the hyperparameters of DCA, a random search strategy is
utilized to find better hyperparameter combinations [12]. Com-
pared to the conventional grid search, random search strategy
is more efficient for the hyperparameter setting of deep learn-
ing models. In this paper, the number of convolutional layers,
the size of kernel filters, and the types of backpropagation
algorithms are determined using the calibration results from
random search. Further, to tackle the overfitting problem of
multi-layer structure, we have adopted a dropout strategy to
randomly remove neurons of each layer in the training process
[11].

IV. NUMERICAL RESULTS

The proposed DCA-based data compression method is
tested using our real SM data described in section II-A. In
this case study, based on the results of the random search, the
encoder consists of two pairs of convolutional and pooling lay-
ers followed by one convolutional and a fully-connected layer.
The decoder involves one fully-connected and a transposed
convolutional layer followed by two pairs of transposed con-
volutional and unpooling layers. The activation functions for
hidden layers and output layer are selected as the PReLU and

TABLE I: Sensitivity analysis of various CR based on MSE
and MAE.

Energy Data Compression Voltage Data Compression

Structure CR MSE MAE Structure CR MSE MAE

Conv(3,3,16)

Conv(6,6,8)

Conv(3,3,8)

2 0.00488 0.0437

Conv(3,3,16)

Conv(6,6,8)

Conv(3,3,8)

4.5 0.00353 0.0404

Conv(3,3,16)

Conv(6,6,8)

Conv(3,3,4)

4 0.00629 0.0491

Conv(3,3,16)

Conv(6,6,8)

Conv(3,3,4)

9 0.00363 0.04137

Conv(3,3,16)

Conv(6,6,8)

Conv(3,3,2)

8 0.00928 0.06057

Conv(3,3,16)

Conv(6,6,8)

Conv(3,3,2)

18 0.00389 0.04224

Conv(3,3,16)

Conv(6,6,8)

Conv(3,3,1)

16 0.0139 0.0754

Conv(3,3,16)

Conv(6,6,8)

Conv(3,3,1)

36 0.0048 0.0478

sigmoid, respectively [11]. The Nesterov-accelerated Adaptive
Moment Estimation (Nadam) backpropagation method is used
to update the weight and bias variables of the kernel filters
[11].

After training the energy and voltage-based DCAs, the
performance of the proposed SM data compression method
is evaluated over the testing set and governed by the re-
construction error and CR. The CRs are computed based
on the dimensions of the original and compressed data. The
mean square error (MSE) and mean absolute error (MAE)
are utilized as evaluation metrics to assess the reconstruction
errors [14].

Table I presents CRs, MSEs, and MAEs of eight different
DCAs. Note that the hyperparameters of a single convolutional
layer are denoted as (a, b, c), where the first two numbers are
the height and the width of the kernel filter and the third
is the number of kernels. As is demonstrated by this table,
when CR = 2, 4, 8, 16, MSEs of reconstructed energy data
are 0.00488, 0.00629, 0.00928, 0.0139, which shows the satis-
factory performance of the proposed method. Based on Table
I, it is observed that the qualities of voltage reconstruction
are generally better than those of energy data. As an example,
when CR = 36, the largest voltage MSE is obtained, which is
still lower than the smallest energy MSE. The intuition behind
this is the smaller voltage variation in the distribution system.

In order to further show the performance of the proposed
method, two existing lossy data compression methods, PCA
[7] and deep autoencoder [14] are compared with our ap-
proach. Note that the testing data of these two methods are
also processed by our data transformations, which means the
impacts of temporal/spatial relationships are eliminated. In all
methods, the CRs are fixed to 8 and 36 for energy and voltage
data compression, respectively. The reconstructed examples of
energy and voltage are presented in Fig. 4 and Fig. 5. Fig. 4a
shows original energy data in the 2-dimensional image format
and Fig. 4b-4d demonstrate the reconstructed data by three
algorithms. Comparing Fig. 4b and Fig. 4d, it can be seen
that the quality of the reconstructed data from DCA is better
than PCA. Specifically, the conspicuous differences are easy
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(a) Original energy data in 2-dimensional image format.

(b) Reconstructed energy data by PCA.

(c) Reconstructed energy data by deep autoencoder.

(d) Reconstructed energy data by the proposed DCA.

Fig. 4: Comparison of energy data compression results.

to observe in the last two data images. On the other hand,
the reconstructed data of DCA is comparable with that of
the deep autoencoder. However, in this case, the number of
parameters in the deep autoencoder is around 400k which
is 50 times higher than the number of parameters in DCA:
8k. Thus, compared with deep autoencoder, our method can
achieve similar reconstructed results with a limited number
of parameters, thus reducing the risk of overfitting. Fig. 5a-
5d present the original voltage data and the reconstructed
data of three algorithms. Visually, all methods have accurate
reconstruction results due to the small variation of voltage
in the same feeder. According to the evaluation metrics, the
MSE of DCA, 0.00389, is slightly lower than the MSE of
PCA 0.00475. Consequently, given the fixed CRs, based on
this AMI dataset, DCA has better accuracy for SM data
reconstruction compared to the previous works.

V. CONCLUSION

In this paper, we have presented a DCA-based method
for SM data compression and reconstruction to improve the
efficiency of data transmission and storage. Using our ap-
proach, it is demonstrated that by exploiting the temporal-
spatial relationship in different types of metering data, accurate
data reconstruction can be achieved, while the number of
parameters can be reduced to address the overfitting problem.
The proposed method is successfully validated using real SM
data and is shown to have better performance compared to the
existing methods in the literature.
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