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Abstract—This paper presents an approximate Reinforcement
Learning (RL) methodology for bi-level power management of
networked Microgrids (MG) in electric distribution systems. In
practice, the cooperative agent can have limited or no knowl-
edge of the MG asset behavior and detailed models behind the
Point of Common Coupling (PCC). This makes the distribu-
tion systems unobservable and impedes conventional optimization
solutions for the constrained MG power management problem.
To tackle this challenge, we have proposed a bi-level RL frame-
work in a price-based environment. At the higher level, a
cooperative agent performs function approximation to predict
the behavior of entities under incomplete information of MG
parametric models; while at the lower level, each MG provides
power-flow-constrained optimal response to price signals. The
function approximation scheme is then used within an adaptive
RL framework to optimize the price signal as the system load
and solar generation change over time. Numerical experiments
have verified that, compared to previous works in the litera-
ture, the proposed privacy-preserving learning model has better
adaptability and enhanced computational speed.

Index Terms—Distribution systems, networked microgrids,
power management, reinforcement learning, adaptive
training.

NOMENCLATURE

Indices

i, j Indices of bus numbers ∀i, j ∈ �I .
k Index of line number ∀k ∈ �K .
n Index of MG.
t Index of episode/time instant.

Parameters

af / bf / cf Coefficients of the DG quadratic cost function.
ECap Max. capacity of ESS unit.
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ePV , eD Prediction error standard deviations.
G/B Real/imag. parts of the bus admittance matrix.
ÎPV Vectors of solar irradiance estimation.
IPV Real normalized solar irradiance.
PCh/Dis,M Max. ESS charging/discharging limits.
P/QD Active/reactive load.
P/QDG,M Max. DG active/reactive power capacity.
PDG,R Max. DG ramp limit.
PPV PV active power output.
P/QPCC,M Max. active/reactive power flow at the PCCs.
P̂D Vectors of aggregate active load estimation.
PD Real active load.
QPV,M Max. PV reactive power output limit.
S States in Markov decision process.
LM Max. line flow limit.
SOCM/m Max./min. SOC limits.
T Length of the moving decision window.
�t Time step.
α/β Shape parameters of beta distribution.
ηCh/Dis Charging/discharging efficiency of ESS unit.
λF Diesel generator fuel price.
λR,M/m Max./min. retail price limits.
λW Wholesale energy price.
θ Vector of regression parameter.
θ∗ Vector of converged regression parameter.
θTh/VTh Threshold value.
γ Discount factor that defines the preference.
δ Step size that defines the rate of learning.
μ Regularization factor.
φ Forgetting factor.
ε ε-greedy exploration factor.

Variables

a Actions in Markov decision process.
F Fuel consumption of DG.
SOC SOC of the battery system.
PCh/Dis Charging/discharging power of ESS unit.
P/QDG DG active/reactive power outputs
P/Qij Line active/reactive power flows
P/QPCC Active/reactive power flow at the PCC.
PW Exchanged power with the wholesale market.
QESS Reactive power outputs of ESS unit.
QPV PV inveter reactive power outputs.
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V/�θ Voltage magnitude and phase angle difference.
xp/xq MGs power management decision vectors.
λR Retail price signals at the PCCs.
uCh/Dis ESS charge/discharge binary variables.

Functions

Qt(S, a) State-action value function.
Q∗t (S, a) Optimal state-action value function.
Q̂t(S, a|θ) Parameterized approximate state-action value

function.
QS·a(t|θ) Parameterized regression sub-component with

state-action interaction.
QS(t|θ) Parameterized regression sub-component with

state values.
Qa(t|θ) Parameterized regression sub-component with

action values.
R(t) Reward function in Markov decision process.

I. INTRODUCTION

ASMART distribution system consisting of networked
microgrids (MGs), with local Distributed Generators

(DG), Renewable Energy Resources (RES), and Energy
Storage Systems (ESS), can facilitate reliable service provi-
sion to customers in power systems [1]. Smart independent
MGs are considered as a viable solution for electrification
of rural areas, which are excluded from traditional electri-
fication programs due to their remote location and financial
constraints [2]. To ensure the long-term sustainability and
encourage economic development in rural communities, the
feasibility of cooperative business models for rural system
electrification has been analyzed previously [2]–[4]. It has
been shown that a non-profit cooperative can act as an interme-
diary agent between the rural MGs and the wholesale market.
The power is exchanged between the MGs and the cooperative
at a retail rate, and the revenue from electricity sales in the
wholesale market is returned to MGs. The retail energy pricing
program can be used to influence the MGs’ behavior based on
the availability of resources. Real cases of cooperative business
models with rural MGs as participating members can be found
in [3], [4]. The autonomous cooperative business settings in
these cases have been designed to benefit rural communities.

Coordinating the real-time behavior of multiple privately-
owned rural MGs in a cooperative business model is a
necessary, yet challenging task [5], [6]. Due to data pri-
vacy and ownership concerns for MGs, the main difficulty
in the way of obtaining a desirable coordination scheme is
the limited access to real-time asset behaviors and models
behind the Point of Common Coupling (PCC) with MGs,
which hinders conventional model-based constrained power
management solvers. This problem becomes more severe as
the penetration of MGs in rural distribution systems grows.
A wide range of methods have been applied in the litera-
ture with the aim of economic operation of the networked
MGs, including methods such as heuristic techniques [7], [8],
centralized decision models [9], [10], constrained hierarchical
control architectures [11]–[13], and distributed optimization
methods [14], [15].

However, the functionality of previous models [7]–[15]
highly depends on the full system operator’s knowledge of
MG operation behind the PCC and customers’ private data
at node-level, including nodal demand load consumption,
nodal generation capacities, nodal PV generations, sensitive
cost information, asset constraints, as well as MG network
topology and configuration data. Access to these information
could compromise the data confidentiality and privacy of MGs
and customers that participate in a cooperative business set-
ting. Also, previous methods can be mostly categorized as
“model-based”, since the decision agents depend on detailed
physical models of the distribution systems. One shortcom-
ing of model-based solutions is their inability to adapt to
constantly-changing system conditions when the amount of
measurement data is limited.

A promising alternative to model-based optimization
approaches is reinforcement learning (RL), which is a model-
free data-driven technique that can be used to optimize the
behavior of an agent through repeated interactions with its
environment, without full system identification and no a pri-
ori knowledge of the system. A number of papers have given
examples of how RL techniques can be applied in power
systems. In [16], [17], energy consumption scheduling prob-
lems were solved for single MGs and individual residential
buildings using RL algorithms. However, the above studies
only focus on providing optimal solutions to power man-
agement problems for single entities instead of addressing
coupled decision models for multiple interconnected entities
in a cooperative setting.

In this paper, to solve the problem of decision making under
incomplete information while providing decision adaptability,
a bi-level cooperative framework is proposed using an RL-
based method for a distribution system consisting of multiple
networked privately-owned MGs: at Level I of the hierarchy, a
non-profit cooperative agent maximizes the total MGs’ revenue
from power exchange with the wholesale market. This is done
by setting the retail prices, with access only to active/reactive
power measurements at the MG PCCs and aggregate load and
solar irradiance information behind the PCCs. The cooperative
agent acts as an intermediary between the MGs and the whole-
sale market, and returns the revenue to the MGs. At Level II
of the hierarchy, each MG Control Center (MGCC) agent
receives the price signal from the cooperative agent and solves
the power-flow-constrained MG power management problem.
The objective at this level consists of the MG operational cost
and the allocated revenue from the cooperative agent. In sum-
mary, the main contributions of this paper can be listed as
follows:
• The proposed power management system can handle

the current limitations raised from data privacy and
ownership in the cooperative setting. Considering the
model-free nature of our RL-based method, the data pri-
vacy of MGs and the data confidentiality of customers are
maintained. The power management problem is solved
with access to only minimal and aggregated data.

• The proposed RL solver is faster than conventional
optimization solvers since the learned state-action value
function acts similar to a memory that recalls from the
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Fig. 1. The architecture of the bi-level networked MGs power management.

cooperative agent’s past experiences to estimate new
optimal solutions. This is done by updating the state val-
ues at each decision window and without re-solving the
decision problem.

• The RL framework is trained using a regularized recur-
sive least square methodology with a forgetting factor,
which enables the decision model to be adaptive to
changes in system parameters which are excluded from
the cooperative agent’s state set.

The reminder of the paper is organized as follows:
Section II presents the overall decision hierarchy. Section III
elaborates the proposed RL-based framework. Section IV
describes the MG power management problem. Simulation
results and conclusions are given in Sections V and VI,
respectively.

II. OVERALL DECISION HIERARCHY

Fig. 1 gives a general overview of the proposed bi-level
power management scheme for a distribution system with
multiple MGs, as follows:

Level I - RL-based Distribution System Control: The coop-
erative agent employs an adaptive model-free RL method,
developed using a regularized recursive least square function
approximation methodology, to find the optimal retail price
signals for the MGs based on the latest system states. This
cooperative agent is non-profit in the sense that it does not
maximize its own profit, but maximizes the social welfare for
the whole system, which includes the summation of profits of
all the MGs as participating members in the cooperative busi-
ness model. The price signals are then transmitted to MGCC
agents. The RL training process is performed by the coop-
erative agent through repeated interactions with the MGCC
agents. At this level, each MG is modeled as an aggregate
controllable load which is price-sensitive. The task of the
RL algorithm is to discover the complex relationship between
retail price and exchanged power with MGs at PCCs, with-
out direct detailed knowledge of system operation behind the
PCCs and only with access to estimations of the solar irra-
diance and aggregate fixed loads for each MG. Based on
the definitions of data privacy and confidentiality in smart
grid [18], this approach limits the need for access to local
cost and operational constraint data of individual MGs in the

first place. Hence, the proposed method maintains both the
privacy of personal information and privacy of behavior for
MGs. Moreover, unlike conventional centralized optimization
methods, the proposed RL technique does not need customer
confidential information at the node-level, such as customer
load consumption, as it only uses aggregate data at the MG
PCCs for optimal decision making. Furthermore, renewable
and load power uncertainty are represented within the learn-
ing model state set. To facilitate adaptive conformation to
changes in system parameters that are not included in coopera-
tive agent’s state set, such as fuel price, a forgetting mechanism
has been integrated into the training process to assign higher
importance levels to the latest observed data, compared to
previous observations.

Level II - MG Power Management: At the second level,
the MGCC agents receive the price signal for a look-ahead
moving decision window. Based on the received price sig-
nals, each MGCC agent solves a constrained Mixed Integer
Nonlinear Programming (MINP) to dispatch their local gener-
ation/storage assets to maximize their revenue (or equivalently
minimize their cost) in the price-based environment, subject
to full AC power flow constraints. Each MG’s total rev-
enue includes the cost of operation and the allocated revenue
received from the cooperative agent. Based on the solution
to this problem, each individual MGCC agent determines the
exchanged active and reactive power with the distribution
system at PCC.

Note that the RL-based reward maximization problem at
Level I is subject to the power-flow-constrained response of
MGs at Level II. Since the MGs are sensitive to electricity
price, the reward value cannot be maximized by setting the
price to its highest value. This will lead to the maximum
DG generation, which will result in a decline in the coopera-
tive agent’s revenue. Hence, optimal price is reached based on
a tradeoff between MGs’ over-generation (when price is too
high) and over-consumption (when price is too low). Also,
note that the response of MGs itself is explicitly constrained
by network power flow constraints.

III. LEVEL I: ADAPTIVE RL-BASED DISTRIBUTION

SYSTEM CONTROL

At the first level of the hierarchy, a non-profit cooperative
agent is in charge of setting the retail price of electricity at
different times to maximize the revenue from power exchange
with wholesale market, which will be allocated between MGs.
This problem is formulated and solved over a moving decision
window of length T . The difficulty in solving this problem is
that the cooperative agent has incomplete knowledge of MGs’
asset control and management data. To solve this problem,
an RL approach is adopted, in which the decision making
cooperative agent observes the response of its environment,
consisting of networked MGs, to its actions at different states.
Based on the received reward/cost signals from its environment
and without explicit modeling, the cooperative agent searches
for actions that optimize its expected accumulated received
rewards at different system states.
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A. Proposed RL-Based Method Structure

A RL framework consists of a Markov decision process
including a set of states (SSS ∈ S), a set of actions (aaa ∈
A), a reward function (π : S × A → R), and a state-
action value function corresponding to each state-action pair
(Q : S × A → R). These components are defined for the
problem at hand, as follows.

1) State Set Definition: In this paper, the system state,
which is denoted by SSS(t) = (S1S1S1(t), . . . ,SNSNSN(t))� at time t, is
a concatenation of MGs’ local state vectors (SnSnSn(t) for the nth

MG) defined as:

SnSnSn(t) =
{

ÎPV(t, n), P̂D(t, n)
}

(1)

where, ÎPV(t, n), P̂D(t, n) are the vectors of solar irradiance
estimation, and aggregate active load power estimation for the
nth MG at time t, respectively. Hence, to define the global state,
the cooperative agent needs to estimate or predict the uncer-
tain aggregate solar irradiance and load at the PCC for each
MG. To represent the uncertainty of the prediction process,
prediction error values are considered to the actual underlying
solar irradiance and load values, as shown below:

ÎPV(t, n) ∼ Beta(α, β) (2a)

α = β
(∑

i IPV
i,t,n

)
(
1−∑

i IPV
i,t,n

) (2b)

β =
(

1−
∑

i

IPV
i,t,n

)(∑
i IPV

i,t,n

(
1+∑

i IPV
i,t,n

)

e2
PV

− 1

)
(2c)

P̂D(t, n) ∼ N
(∑

i

PD
i,t,n, e2

D(t)

)
(2d)

where,
∑

i IPV
i,t,n and

∑
i PD

i,t,n are the real aggregate normalized
solar irradiance and load over the decision window, and ePV

and eD are the beta and Gaussian estimation error standard
deviations. The values of parameters of beta and Gaussian
distributions are adopted from the [19]–[21].

2) Action Set Definition: Given the definition of model
states, the global action vector is similarly defined by the retail
price signals at the PCCs with MGs, denoted as λR

t,n for the
nth MG, aaa(t) = (λR

t,1, . . . , λ
R
t,N)�.

3) Reward Function Definition: The reward function at
time t represents the discounted accumulated revenue of the
cooperative agent over the moving decision window with
length T:

R(t) =
T−1∑
t′=0

γ t′
(

λW
t+t′P

W
t+t′ −

N∑
n=1

λR
t+t′,nPPCC

t+t′,n

)
(3)

where, γ is a discount factor (0 ≤ γ ≤ 1) that
defines the cooperative agent’s preference for the immediate
reward, defined as the revenue at time t, π(t) = λW

t PW
t −∑N

n=1 λR
t,nPPCC

t,n . Also, λW
t denotes the wholesale energy price,

PW
t is the exchanged power with the wholesale market, where

PW
t ≤ 0 represents power import from the wholesale market.

PPCC
t,n is the active power transfer between grid and the nth

MG through the PCC, where PPCC
t,n ≥ 0 implies export from

MGs to grid. The extreme case of γ = 0 represents a myopic

cooperative agent, which favors only the immediate economic
rewards and assigns zero weights to future expected rewards.
However, as the discount factor increases the cooperative agent
starts to include future expected rewards into its optimal deci-
sion problem. Hence, when the discount factor reaches γ = 1
the cooperative agent assigns equal weights to all the expected
reward values for all the time instants in the decision window.

4) State-Action Value Function Parameterization: To
optimize the cooperative agent’s action, an auxiliary state-
action value function is formed, denoted as Q(S, a), which
can be thought of as a replacement for the explicit system
model. The state-action value function determines the long-
term accumulated expected reward given the current state and
action vectors:

Qt(SSS,aaa) = E

{
T−1∑
t′=0

γ t′π
(
t + t′

)|SSS(t) = SSS,aaa(t) = aaa

}
(4)

where, Qt(SSS,aaa) is the expected accumulated reward if the ini-
tial starting state is SSS(t), while the selected initial action is
aaa(t), and the latest optimal policy is followed for every other
time-step in the future. The expectation operator E{} is calcu-
lated with respect to the future expected action-states, which
in this case are in turn functions of the solar-load uncertain
powers.

The goal of RL is to learn an optimal state-action value
function, Q∗t (SSS,aaa), that satisfies the Bellman optimality equa-
tion [22], as follows:

Q∗t (SSS,aaa) = E

{
π(t + 1)+ γ ·max

a′a′a′
Q∗t

(
SSS(t + 1),a′a′a′

)}
(5)

Since solving (5) directly is not possible, RL provides a
framework to obtain the optimal state-action value function
which satisfies (5) using an iterative episodic learning envi-
ronment. To implement this framework for the cooperative
agent interacting with multiple MGs, the state-action value
function is parameterized employing a multivariate polynomial
regression approximation technique [22]–[24], defined by Q̂t,
which consists of three multivariate polynomial elements with
maximum degree 2:

Qt(SSS,aaa) ≈ Q̂t(SSS,aaa|θθθ) = QSSS·aaa(t|θθθ)+ QSSS(t|θθθ)+ Qaaa(t|θθθ) (6)

Given the regression parameter vector θθθ , QSSS·aaa, QSSS, and
Qaaa are the parameterized sub-components that quantify the
impacts of state-action interaction QSSS·aaa(t|θθθ), state values
QSSS(t|θθθ), and action values Qaaa(t|θθθ), respectively. These regres-
sion sub-components in multivariate polynomial regression
model are defined as follows:

QSSS·aaa(t|θθθ) =
N∑

n=1

θ1
t,nλ

R
t,nÎPV(t, n)+

N∑
n=1

θ2
t,nλ

R
t,nP̂D(t, n) (7)

QSSS(t|θθθ) =
N∑

n=1

θ3
t,nÎPV(t, n)+

N∑
n=1

θ4
t,nP̂D(t, n) (8)

Qaaa(t|θθθ) =
N∑

n=1

θ5
t,nλ

R
t,n + θ6 (9)
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Fig. 2. Proposed RL-based framework.

where, θθθ = {θk
t,n, θ

k} constitute the parameters of the approxi-
mate state-action value function that have to be learned by the
cooperative agent through repeated interaction with the MGs.

Together these three components form a bilinear regression
model to parametrize the state-action value function (i.e., the
regression model is linear with respect to each of its argu-
ments.) The reason for selecting a bilinear regression model
is the structure of the reward function (3), which also fol-
lows a bilinear relationship between the price signal and the
aggregate power measured at MG PCCs and the substation.
Furthermore, the state-action value parameterization shown
in (7)-(9) offers two critical advantages compared to other
types of function approximators: 1) Using a bilinear regres-
sion model will simplify optimal action selection procedure
considerably, as will be shown in Section III-B. For instance,
if an artificial neural network is used, optimal action selec-
tion becomes intractable. However, using the proposed bilinear
regression model, optimal action selection reduces to linear
programming, which can be solved easily. 2) A basic challenge
in choosing the form of a function approximator is the trade-
off between over-parametrization and estimation accuracy. For
example, as we increase the degree of the multivariate poly-
nomial approximator the value estimation accuracy for new
state-action pairs would also improve; however, at some point
the function approximator becomes over-parameterized and
will start overfitting to the available data, at which point the
performance declines. We observed that by limiting the degree
of the multivariate polynomial degree to 2, the best estimation
accuracy can be achieved while maintaining a safe margin to
avoid overfitting under various practical case studies.

B. Adaptive RL-Based Method Training

To achieve this task we have adopted an adaptive episodic
learning mechanism, which is shown in Fig. 2. Each episode in
the learning process corresponds to an online decision instant.
Hence, as the decision window rolls along time new episodes
are perceived by the cooperative agent. The learning process
has the following steps.

Step 1 (Initialization): The time index is initialized as
t = t0, representing the first episode. The parameters of the
state-action value function are initialized, θθθ ← θθθ(t0). The
initial state of the system, corresponding to solar irradiance
and aggregate load of all the MGs for the decision window
[t0, t0 + T] is predicted, SSS(t0), . . . ,SSS(t0 + T). Note that these
predicted states, while representing system uncertainty, are
updated continuously as the decision window rolls along time.

Step 2 (ε-greedy Action Selection): Based on the latest state-
action value function defined by parameter θθθ , the optimal
actions are estimated for the decision window [t, t + T] to
maximize the cooperative agent’s accumulated reward, as
follows:

aoptaoptaopt
(
t′
) = arg max

a′a′a′
Qt′

(
SSS
(
t′
)
,a′a′a′

)

s.t. a′a′a′ =
(
λR

t′,1, . . . , λ
R
t′,N

)�

λR,m ≤ λR
t′,i ≤ λR,M,∀ i = {1, . . . , N}

∀t′ = {t, . . . , t + T} (10)

where, ρλρλρλ = [λR,m, λR,M] defines the minimum/maximum
range of action for retail price. Note that given the param-
eterization for Qt(SSS,aaa) in (7)-(9), (10) is basically a set of
linear programs, which can be solved efficiently using off the
shelf solvers. A critical aspect of (10) is that the obtained
optimal action, aoptaoptaopt(t), is calculated with respect to the lat-
est state-action value function, which could be far from being
accurate in the early stages of training. Hence, to reduce the
risk of sub-optimality and to strike a balance between explo-
ration and exploitation of decision space, an ε-greedy action
selection method [22] is adopted, with 0 ≤ ε � 1, to select
the cooperative agent’s action at time t:

aaa(t) =
{

aoptaoptaopt(t) if r ≥ ε

λR
t,i ∼ U{ρλρλρλ} ∀i if r < ε

(11)

where, r is a random number selected uniformly, r ∼
U{[0, 1]}, with U{AAA} representing uniform probability dis-
tribution over the set AAA. The randomization (11) promotes
continuous exploration of action space to improve the outcome
of the learning process. Upon obtaining the action vector aaa(t),
retail price signals are sent to each MGCC agent.

Step 3 (Networked MG Power Management): Based on
the received price signals, λR

t′,n,∀n, t′ = {t, . . . , t + T}, each
MGCC agent solves its optimal power management problem
(Section IV). Based on the solutions at this stage, the aggre-
gate power injection/withdrawal to/from the grid are obtained
at the PCCs with the MGs, denoted as PPCC

t′,n and QPCC
t′,n ,

∀n, t′ = {t, . . . , t + T}.
Step 4 (Accumulated Reward Calculation): Based on the

outcomes of the MG power managements, the net power
exchange with the wholesale market, PW

t , is determined and
used to calculate the discounted accumulated revenue for the
decision window [t, t + T], using (3).

Step 5 (Adaptive Model Training): Using the observed
reward signal, the regression models defined in (7)-(9) are
updated, based on a gradient descent approach to modify the
parameters in the direction of improving the generalization
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capacity of the state-action value function [22]:

θθθ(t + 1)← θθθ(t)+ δ
{

R(t)− Q̂t(SSS,aaa|θθθ)
}
∇θθθ Q̂t(SSS,aaa|θθθ) (12)

where, δ is the step size that defines the rate of learning. Note
that ideally we require Q̂t(SSS,aaa|θθθ) = R(t), which implies that
the approximate state-action value function is able to accu-
rately predict the accumulated reward. Accordingly, (12) is
devised to reduce this prediction error over time. To imple-
ment (12), two points have to be taken under consideration:
1) since data acquisition and the training process both depend
on cooperative agent action selection, approximate RL algo-
rithms are known to be prone to overfitting and over-estimation
of the values of state-action pairs [25]. Hence, a regular-
ization mechanism has to be adopted to reduce the risk of
overfitting, 2) the distribution system parameters are subject
to change over time. These time-varying parameters, such as
price of fuel, are not directly captured in the Markov decision
process’s state definition. This makes the learned model sus-
ceptible to failure in case considerable changes occur in the
values of these parameters. Hence, the training process needs
to be adaptive to enable cooperative agent to quickly conform
to new system conditions. To implement (12) while consider-
ing the above-mentioned points, a regularized recursive least
squares algorithm with exponential forgetting is designed [26].
The regression parameters are updated recursively, as follows:

θθθ(t + 1)← θθθ(t)+���(t)xxx(t)
{

R(t)− Q̂t(SSS,aaa|θθθ)
}

(13)

���(t + 1)← �̂��(t + 1)
(

I + μ�̂��(t + 1)
)−1

(14)

�̂��(t + 1)← 1

1− φ

(
���(t)− ���(t)xxx(t)xxx(t)����(t)

1+ xxx(t)����(t)xxx(t)

)
(15)

where, xxx(t) = (SSS(t),aaa(t))� represents the latest cooperative
agent’s observation, ��� is an auxiliary matrix mimicking the
regression pseudo-inverse matrix, μ is the regularization fac-
tor which is used for re-scaling the model covariance, and
0 ≤ φ < 1 is the forgetting factor. The regularization fac-
tor acts as a weight for penalizing the Euclidean norm of
parameter vector (i.e., ||θθθ ||2) in a ridge regression setting to
prevent overfitting. The forgetting factor enables the coop-
erative agent to “forget” its earlier experiences in favor of
the newer observations by assigning lower weights to the
previously learned parameters. Hence, the forgetting factor
introduces an exponential extenuation of data history over
time.

Step 6 (State Transition): The decision window is moved
forward to the new episode, t← t+ 1. The new system state
for the decision window, [t, t+T] is predicted and denoted as
{SSS(t), . . . ,SSS(t + T)}.

IV. LEVEL II: MGCC AGENT POWER MANAGEMENT

At Level II, each MG receives the price signals from the
cooperative agent to solve the constrained optimal power
management problem within a moving decision window indi-
vidually, as shown in the paper Appendix, (16)-(40). Each MG
is comprised of local DGs, ESS, solar Photo-Voltaic (PV) pan-
els and a number of loads. Hence, to account for the impacts

Fig. 3. Test system under study.

TABLE I
RL-BASED METHOD PARAMETERS

of MGs on each other, the MG-level optimal power flow solver
is based on an interactive non-linear programming algorithm.
The steps of the interactive power flow solution are as follows:

Step I (Receive Input Signals From Level I): The MGs
receive the retail price signals at the PCCs, λR

t,n, from the
cooperative agent.

Step II (Solve Individual MG Optimal Power Management
Problem): Given λR

t,n and the estimated voltage at PCC, the
power management problem (16)-(40) is solved independently
by each MGCC, and the exchanged active and reactive powers
at the PCCs are obtained for each MG.

Step III (Solve Power Flow Problem Over Distribution
System): Treating MGs as fixed PQ loads in the external
distribution system, power flow is solved over the network
connecting the MGs. The total substation exchanged power,
PW

t , and voltage values at PCCs, VPCC
t,n , are updated based on

the power flow solution.
Step IV (Check Convergence): Go back to Step III to update

PQ values corresponding to each MG, until the changes in
voltage values at MG PCCs are smaller than a threshold
value VTh.

To summarize, the pseudo-code of the proposed bi-level RL-
based framework has been shown in Algorithm 1.

V. NUMERICAL RESULTS

The proposed method is tested on a modified medium volt-
age 33-bus distribution network [27], which has been widely
used for studies pertaining to distribution system [28]. The
case study consists of four MGs as shown in Fig. 3. Each MG
is modeled as a modified IEEE 13-bus network at a low voltage
level [29]. Hence, the system has a total number of 85 nodes.
To represent a realistic model, we simulated an unbalanced
system, where the loads and generators are almost uniformly
distributed across phases. Note that the proposed model-free
power management technique applies to both balanced and
unbalanced systems. Table I presents all setting parameters
for the proposed RL-based method in this paper.
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Algorithm 1 Bi-Level RL-Based Power Management Method
1: Select T, γ, δ, μ, φ, ε,θθθ(t0)
2: procedure LEVEL I: RL ACTION SELECTION(θθθ)
3: t← 1
4: SSS← [SSS(t), . . . ,SSS(t + T)]
5: Qt(SSS,aaa)← Q̂t(SSS,aaa|θθθ)

6: aoptaoptaopt(t)← Solve linear program (10)
7: λR

t,i ∼ U{ρλρλρλ}
8: r ∼ U{[0, 1]}
9: if r ≥ ε then

10: aaa(t)← aoptaoptaopt(t)
11: else
12: aaa(t)← λR

t,i
13: end if
14: end procedure
15: procedure LEVEL II: MGCC AGENT POWER

MANAGEMENT(aaa)
16: k← 1
17: λR ← aaa(t), Vn(k)← VPCC

t,n
18: PPCC

t,n , QPCC
t,n ← Solve (16)-(40) ∀n with Vn(k)

19: Vn(k)← Solve power flow with {PPCC
t,n , QPCC

t,n }
20: if �|Vn| ≥ VTh then
21: k← k + 1
22: Go back to Step 18
23: else
24: Go to Step 27
25: end if
26: end procedure
27: procedure LEVEL I: RL UPDATE STATE-ACTION VALUE

FUNCTION(PPCC, PW ,SSS,aaa, θθθ )
28: R(t)←∑T−1

t′=0 γ t′(λW
t+t′P

W
t+t′ −

∑N
n=1 λR

t+t′,nPPCC
t+t′,n)

29: Q̂t(SSS,aaa|θθθ)← QSSS·aaa(t|θθθ)+ QSSS(t|θθθ)+ Qaaa(t|θθθ)

30: θθθ(t + 1)← θθθ(t)+ δ{R(t)− Q̂t(SSS,aaa|θθθ)}∇θθθ Q̂t(SSS,aaa|θθθ)

31: if ||θθθ(t + 1)− θθθ(t)|| ≥ θTh then
32: t← t + 1
33: Go back to Step 4
34: else
35: θ∗ ← θ(t + 1)

36: Output θ∗
37: end if
38: end procedure

A. System Operation Outcomes

The aggregate active load profiles of all the MGs and
the average load are presented in Fig. 4(a). The aggregate
solar active generations in each MGs have been shown in
Fig. 4(b). Both load demands and PV generations data with
15 minutes time resolution are obtained from smart meters to
provide realistic numerical experiments. The wholesale mar-
ket prices used in the numerical case study have been shown
in Fig. 4(c), which are adopted from the historical whole-
sale electricity market data from U.S. Energy Information
Administration [30].

The retail price signals for the MGs, which are the optimal
actions from Level I of the proposed RL-based model, are
presented in Fig. 5. Power exchange between MGs and the

Fig. 4. Input data for the case study.

main grid under optimal price actions, which are the responses
of each MG to the actions, are shown in Fig. 6. These fig-
ures show the correlation between MGs’ behavior and the
retail price signal. This demonstrates the mutual impacts of
the two levels of the decision model. As the wholesale price
increases, the cooperative agent increases the retail prices to
encourage the MGs to produce more power to reduce the
costs of power purchase from the wholesale market. It can
be observed that, most of the time, the cooperative agent
exports power to the heavily loaded MGs to maintain power
balance in the system. The reason for this is that MGs cannot
provide their local demand consumption by their own local
generation and have to purchase power from the coopera-
tive service provider. The overall operational costs of MGs
have been compared with and without a cooperative agent
as an intermediary between the wholesale market and MGs.
As can be seen from Fig. 7, the total operational costs of
each MG are reduced due to the returned revenue from the
cooperative service provider. Therefore, as an intermediary
between the MGs and the wholesale market, the coopera-
tive agent can help MGs to reduce their overall operational
cost. Hence, it is in the interest of the MGs to participate
in the wholesale market through the non-profit cooperative
agent.
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Fig. 5. Optimal retail price signals (Level I actions).

Fig. 6. Optimal power transfer through PCC of MGs (Level II responses to
optimal actions).

Fig. 7. Comparison of total operational cost of MGs.

B. Benefits of RL-Based Method

A numerical comparison between a centralized off the shelf
solver [31] versus the proposed method for the multiple MGs
power management problem is shown in Table II. In this table,
the total social welfare is defined as the summation of the
cooperative agent’s accumulated reward and the operational
cost of all the MGs. Ideally both of the solvers should output
the global optimal solution to the problem. As can be seen, the
difference between the solutions obtained by the centralized
solver with complete system information, and the proposed
RL method under incomplete information is less than 0.5%
of the total achieved welfare. Note that while the initial RL
training stage can be time-consuming, the decision time is
much smaller than that of a centralized optimization method,
upon convergence. This is due to the fact that the proposed RL-
based method is able to receive continual updates over time,
which enables the decision framework to reach a solution in
real-time without the need to solve a large-scale optimization
problem at each time instant.

To further demonstrate this, we have performed numerical
experiments in which the trained state-action value functions

TABLE II
COMPARISON WITH A CENTRALIZED OPTIMIZATION METHOD

of three different decision windows have been used for a new
decision window without re-training. In Fig. 8, optimal power
transfers are compared for four scenarios representing four
distinct decision windows: in each scenario the RL training
is performed for one of the decision windows from random
initial conditions, while the updated aggregate MG solar gen-
eration and load demand from that decision window are simply
inserted into the learned state-action value functions obtained
from the other three decision windows. Then, the optimal
actions are calculated for each decision window. As can be
seen, for all scenarios the optimal solutions are close to each
other and almost identical. This shows that the state-action
value function learned from other decision windows can be
used reliably in new situations using updated state information.
Hence, the RL model does not necessarily need to be trained
from scratch, and the latest learned function approximator can
be simply used to update the cooperative agent’s decisions. In
practice, however, the re-training process has to be performed
with a user-defined frequency depending on the rate of change
of system parameters.

Therefore, the RL-based method has two fundamental
advantages over centralized optimization method: 1) RL is
model-free; hence, unlike centralized optimization approaches,
it does not require detailed private knowledge of MG systems
to reach the optimal solution. 2) RL is much faster com-
pared to centralized solvers since the learned state-action value
function, which acts similar to a memory, is able to leverage
the cooperative agents past experiences to obtain new optimal
solutions by generalizing to new unseen states.

C. Adaptive RL Results

To verify the functionality of the RL framework, the esti-
mated reward obtained from the multiple linear regression is
compared with the actual reward at each episode, as shown
in Fig. 9. As can be seen, at the earlier stages of the learn-
ing process, the difference between the estimated reward and
the real reward is relatively high. However, as the number of
episodes increases, this difference drops to within an accept-
able range. The results imply that the cooperative agent is able
to accurately estimate the response of MGs to control actions.
Hence, using the proposed RL approach the cooperative agent
is able to track the behavior of MGs and maximize the reward
through continuous interactions.

To test the adaptability of the learning framework against
changes in parameters that have not been included in the
definition of state set and are not directly observed by the
cooperative agent, a numerical scenario is devised. At a point
in time (episode t = 250 h), the DG fuel price is doubled. The
reward estimation mean absolute percentage error (MAPE)
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Fig. 8. Verifying the accuracy of previously-learned models under new state
scenarios from different decision windows (memory effect).

Fig. 9. Performance of the proposed reward function approximation.

with forgetting factor is shown in Fig. 10(a). As can be seen,
upon the occurrence of the sudden change in fuel price, the
learning MAPE temporarily jumps to a very high value since
the cooperative agent is now facing a new unknown environ-
ment, as the price of fuel is not included within the cooperative
agent’s Markov decision process. However, as the learning
process with forgetting proceeds, the MAPE drops to within
acceptable range once more. The cooperative agent can still
track the actual underlying reward signal as the number of
episodes increases with the sudden parameter changes. The
reward estimation MAPE without forgetting factor is shown

Fig. 10. Adaptability of the proposed RL-based method.

Fig. 11. Impact of forgetting factor on learning convergence.

in Fig. 10(b). As can be seen, compared to the proposed adap-
tive RL-based method with forgetting factor, the conventional
RL-based method without forgetting factor shows slow adapta-
tion to changes in parameters. For this case, our RL-method is
able to achieve 25% improvement in the convergence constant
over conventional RL.

In Fig. 11, the impact of forgetting factor on the convergence
of the RL framework is demonstrated. This figure shows the
RL-based reward estimation error for the cooperative agent
under two different forgetting factor values. As the forgetting
factor increases from 0.01 to 0.1, the convergence speed of the
RL framework has been improved. Hence, the forgetting factor
controls the rate of adaptiveness to new conditions. However,
a tradeoff exists between the rate of convergence and the accu-
racy of the solution. As can be seen, higher forgetting factors
also lead to higher variances in the estimation error signal.

VI. CONCLUSION

Smart distribution systems with networked MGs in a coop-
erative setting can facilitate reliable power delivery to cus-
tomers in future rural power grids. However, cooperatives
can have incomplete knowledge of MG members’ opera-
tional parameters due to data privacy and ownership concerns,
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which is an obstacle in the way of optimal decision mak-
ing. Motivated by the shortcomings of model-based multiple
MG power management in distribution systems with lim-
ited observability, this paper presents an adaptive RL-based
methodology for bi-level power management of cooperatives
consisting of multiple networked MGs.

We have shown that: 1) using the proposed decision method,
a cooperative agent is able to accurately track the behavior
of multiple networked MGs under incomplete knowledge of
operation variables behind the PCCs. This can be used to indi-
rectly control the response of participants in a price-based
environment. 2) The proposed RL-based method is able to gen-
eralize from its past experiences to estimate optimal solutions
in new situations without re-training from random initial con-
ditions (i.e., fast response under evolving system conditions).
This immensely speeds up the power management compu-
tational process. 3) The framework is shown to be adaptive
against the changes happening to unobserved parameters that
are excluded from cooperative agent’s state set. The learning
model has been tested and verified using extensive numerical
scenarios. To summarize, the proposed decision model shows
better adaptability, solution quality, and computational time
compared to conventional centralized optimization methods.

The current RL-based decision model is limited to the
power management of a single cooperative service provider
with multiple MGs. However, in more realistic cases, there
could also be multiple cooperative service providers in an
interconnected rural area, which implies that the impact
of cooperative service providers on each other and on the
wholesale price could not be ignored. Hence, an optimal coor-
dination scheme needs to be designed to enable collaboration
among multiple entities. In future work, we will extend the
proposed RL method to address this challenge.

APPENDIX

MG OPTIMAL POWER MANAGEMENT FORMULATION

A moving look-ahead decision window [t, t+ T] is defined
using the latest estimations of solar and load power at dif-
ferent instants, where n is the MG index (n ∈ {1, . . . , N}),
i and j define the bus numbers for each MG (∀i, j ∈ �I),
and k denotes the line index (∀k ∈ �K). It has deci-
sion vector xpxpxp = (PDG

i,t,n, PPCC
t,n , PCh

i,t,n, PDis
i,t,n)

� and xqxqxq =
(QDG

i,t,n, QPCC
t,n , QPV

i,t,n, QESS
i,t,n)

�.

min
xpxpxp,xqxqxq

T+t∑
t

(
−λR

t,nPPCC
t,n + λF

i,t,nFi,t,n

)
(16)

s.t. Fi,t,n = af

(
PDG

i,t,n

)2 + bf PDG
i,t,n + cf (17)

∣∣∣PPCC
t,n

∣∣∣ ≤ PPCC,M
t,n (18)

∣∣∣QPCC
t,n

∣∣∣ ≤ QPCC,M
t,n (19)

0 ≤ PDG
i,t,n ≤ PDG,M

i,n (20)

0 ≤ QDG
i,t,n ≤ QDG,M

i,n (21)∣∣∣PDG
i,t,n − PDG

i,t−1,n

∣∣∣ ≤ PDG,R
i,n (22)

Pij
t,n = Vi

t,n

(
Vi

t,nGij
n − Vj

t,n

(
Gij

ncos
(
�θ

ij
t,n

)

+ Bij
nsin

(
�θ

ij
t,n

)))
(23)

Qij
t,n = −Vi

t,n

(
Vi

t,nBij
n + Vj

t,n

(
Gij

ncos
(
�θ

ij
t,n

)

− Bij
nsin

(
�θ

ij
t,n

)))
(24)

(
Pij

t,n

)2 +
(

Qij
t,n

)2 ≤
(

Lij,M
t,n

)2
(25)

K∑
ij∈k

Pij
t,n =

K∑
ji∈k

Pji
t,n − pi,t,n (26)

K∑
i,j∈k

Qij
t,n =

K∑
j,i∈k

Qji
t,n − qi,t,n (27)

pi,t,n = PD,e
i,t,n − PDG

i,t,n − PPV,e
i,t,n + PCh

i,t,n − PDis
i,t,n (28)

PD
i,t,n = PD,e

i,t,n − εD
i,t,n (29)

PPV
i,t,n = PPV,e

i,t,n − εPV
i,t,n (30)

qi,t,n = QD
i,t,n − QDG

i,t,n − QPV
i,t,n + QESS

i,t,n (31)

VPCC
t,n = VPCC,E

t,n (32)

Vm
i,n ≤ Vi,t,n ≤ VM

i,n (33)∣∣QPV
i,t,n

∣∣ ≤ QPV,M
i,n (34)

SOCi,t,n = SOCi,t−1,n

+ �t
(

PCh
i,t,nηCh − PDis

i,t,n/ηDis

)
/ECap

i,n (35)

SOCm
i,n ≤ SOCi,t,n ≤ SOCM

i,n (36)

0 ≤ PCh
i,t,n ≤ uCh

i,t,nPCh,M
i,n (37)

0 ≤ PDis
i,t,n ≤ uDis

i,t,nPDis,M
i,n (38)

0 ≤ uCh
i,t,n + uDis

i,t,n ≤ 1 (39)

uCh
i,t,n, uDis

i,t,n ∈ {0, 1} (40)

The objective function (16) minimizes each MG’s total
cost of operation, which is composed of two terms: the neg-
ative of revenue from power transfer with the cooperative
agent and the cost of running local DGs. Here, λF

t,n is the
diesel generator fuel price in $/L adopted from [32]. The
fuel consumption Fi,t,n of diesel generator can be expressed
as a quadratic polynomial function (17), with coefficients
af = 0.0001773 L/kW2, bf = 0.1709 L/kW, and cf = 14.67L
adopted from [33]. Constraints (18)-(19) describe the power
exchange limit between the MG and the upstream distribution
grid with the maximum active/reactive power exchange lim-
its, PPCC,M

t,n , QPCC,M
t,n . Constraints (20)-(21) ensure that the DG

active/reactive power outputs, PDG
i,t,n/QDG

i,t,n, are within the DG

power capacity PDG,M
i,n , QDG,M

i,n , and (22) enforces the maxi-

mum DG ramp limit, PDG,R
i,n . Internal AC power flow model

of the MG is considered here with the network topology con-
straints, with (23) and (24) determining the active and reactive
power flows of each branch, where Gij and Bij are the cor-
responding real and imaginary parts of the bus admittance
matrix, and Vi

t,n and �θ
ij
t,n are the nodal voltage magnitude and

phase angle difference, respectively. Constraint (25) denotes
the power flow limits for each branch. Equations (26)-(31)
are the nodal active/reactive power balances at MG buses.
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The difference between the predicted and actual PV/load val-
ues are modeled using Gaussian error variables as shown in
equations (29) and (30), where PD,e

i,t,n denotes the estimated
active load, and PPV,e

i,t,n is the estimated active power out-
put of PV. Also, εD

i,t,n, ε
PV
i,t,n ∼ N(0, σ ) denote the Gaussian

estimation errors for active load and PV power, respectively.
Constraint (32) sets the voltage at the PCC of the MG accord-
ing to the estimated input voltage, VPCC,E

t,n . Constraint (33)
sets the limits for nodal bus voltage amplitude, [Vm

i,n, VM
i,n].

PV reactive power output, QPV
i,t,n, is constrained by its max-

imum limit QPV,M
i,n in (34). Operational ESS constraints are

described by (35)-(40). Adopted from [34], constraint (35)
determines the state of charge (SOC) of ESSs, SOCi,t,n. The
SOC and charging/discharging power of ESS, PCh

i,t,n, PDis
i,t,n, are

constrained in (36)-(40). Here, [SOCm
i,n, SOCM

i,n], PCh,M
i,n and

PDis,M
i,n define the permissible range of SOC, and maximum

charging and discharging power, with uCh
i,t,n and uDis

i,t,n denoting
the charge/discharge binary indicator variables, and ηCh/ηDis

representing the charging/discharging efficiency. ECap
i,n denotes

the maximum capacity of ESSs.
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