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Abstract—This paper proposes a tractable distributionally ro-
bust chance-constrained conservation voltage reduction (DRCC-
CVR) method with enriched data-based ambiguity set in unbal-
anced three-phase distribution systems. The increasing penetra-
tion of distributed renewable generation not only brings clean
power but also challenges the voltage regulation and energy-
saving performance of CVR by introducing high uncertainties to
distribution systems. In most cases, the conventional robust op-
timization methods for CVR only provide conservative solutions.
To better consider the impacts of load and PV generation uncer-
tainties on CVR implementation in distribution systems and pro-
vide less conservative solutions, this paper develops a data-based
DRCC-CVR model with tractable reformulation and data enrich-
ment method. Even though the uncertainties of load and photo-
voltaic (PV) can be captured by data, the availability of smart
meters (SMs) and micro-phasor measurement units (PMUs) is
restricted by cost budget. The limited data access may hinder
the performance of the proposed DRCC-CVR. Thus, we further
present a data enrichment method to statistically recover the
high-resolution load and PV generation data from low-resolution
data with Gaussian Process Regression (GPR) and Markov Chain
(MC) models, which can be used to construct a data-based mo-
ment ambiguity set of uncertainty distributions for the proposed
DRCC-CVR. Finally, the nonlinear power flow and voltage de-
pendant load models and DRCC with moment-based ambiguity
set are reformulated to be computationally tractable and tested
on a real distribution feeder in Midwest U. S. to validate the
effectiveness and robustness of the proposed method.

Index Terms—Conservation voltage reduction, data enhance-
ment, distributionally robust chance-constrained optimization,
distribution systems, tractable reformulation.

I. NOMENCLATURE

Sets and Indices
N , i, j Set and indices of buses.
E , ij Set of branches and index of branch between

bus i and bus j..
G Set of PV generators.
Dξ Ambiguity set of uncertainty.
s Index of service transformer.
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m Index of data sample.
t Index of time instant.
ϕ Index of three-phase ϕa, ϕb, ϕc.
Parameters
A0, A Topology matrices of a radial distribution net-

work.
Dr, Dx Block diagonal matrices of line segment resis-

tance and reactance.
kp1 , k

p
2 , k

p
3 Constant-impedance, -current and -power coef-

ficients for active ZIP load.
kq1, k

q
2, k

q
3 Constant-impedance, -current and -power coef-

ficients for reactive ZIP load.
N Total bus number.
P (t), P (t) Upper and lower bounds of instantaneous

load/renewable generation within the t-th hour.
Pa(t) Average load/renewable generation over the t-th

hour.
pgi,ϕ,t Three-phase deterministic active power injec-

tions by the PV inverter at bus i, phase ϕ and
time t.

tPL
i,ϕ,t, t

QL
i,ϕ,t Deterministic active and reactive load shape

multipliers at bus i, phase ϕ and time t.
scapi,ϕ,t Power capacity of PV inverters at bus i, phase

ϕ and time t.
R,X Sensitive Matrices with line resistance and reac-

tance.
r̄ij , x̄ij Matrices of the line resistance and reactance

over line ij in the unbalanced three-phase dis-
tribution systems.

vmin, vmax Minimum and maximum limits for squared
nodal voltage magnitude.

v0, v Vector of squared nodal voltage magnitudes.
∆V,∆v Vector of voltage and squared voltage devia-

tions.
ϵ Pre-defined risk level in chance constraints.
εpij,ϕ,t, ε

q
ij,ϕ,t Active and reactive power loss nonlinear terms

at line ij, phase ϕ and time t.
εvi,ϕ,t Voltage drop nonlinear term at bus i, phase ϕ

and time t.
Variables
Pij,ϕ,t, Qij,ϕ,tThree-phase active and reactive power flows at

line ij, phase ϕ and time t.
P,Q Vector of active and reactive line power flows.
p, q Vector of active and reactive nodal power injec-
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tions.
pg, qg Vector of active and reactive PV generations.
pZIP, qZIP Vector of active and reactive ZIP loads.
tPL,ξ
i,ϕ,t , t

QL,ξ
i,ϕ,t Three-phase active and reactive load shape mul-

tipliers at bus i, phase ϕ and time t.
pg,ξi,ϕ,t Three-phase active power injections by the PV

inverter at bus i, phase ϕ and time t.
pZIPi,ϕ,t, q

ZIP
i,ϕ,t Three-phase active and reactive ZIP loads at bus

i, phase ϕ and time t.
qgi,ϕ,t, Q

cap
i,ϕ,t Three-phase reactive power injections and power

capacity of PV inverters at bus i, phase ϕ and
time t.

Sij,ϕ,t Three-phase apparent power flow at line ij,
phase ϕ and time t.

vi,ϕ,t Squared of three-phase voltage magnitude at bus
i, phase ϕ and time t.

x Vector of decision variables.
αq
i,ϕ,t Ratio between PV reactive power output and PV

reactive capacity at bus i, phase ϕ and time t.
ξ Compact vector collecting of all uncertain pa-

rameters.
µ,Σ Mean and covariance of the uncertain variables

of load and PV generation.
Functions
GPR∗

s GPR function for the s-th teacher service trans-
former.

MC∗
s Second-order MC function for the s-th teacher

service transformer.
Be Bermouli distribution function.

II. INTRODUCTION

CONSERVATION voltage reduction (CVR) can reduce the
voltage for peak load shaving and long-term energy-

saving [1]. To achieve system-wide optimal performance, volt-
age/var optimization-based CVR (VVO-CVR) is previously
studied [1]–[4], which can be cast into an optimal power flow
program. While the previous works have contributed valuable
insights to VVO-CVR, there are problems remaining open,
summarized as follows:

(1) The impact of load and renewable generation uncer-
tainties on VVO-CVR: In [2], a linear least-squares central-
ized optimization model is developed for coordinating com-
binations of voltage regulating devices and PVs to implement
CVR in distribution systems. In [3] and [4], several alternat-
ing direction method of multipliers (ADMM)-based distributed
optimization algorithms are developed for CVR implemen-
tation, which can decompose a large-scale VVO-CVR prob-
lem into several small-scale problems with improved scalabil-
ity. However, the above centralized or distributed VVO-CVR
works [2]–[4] are developed based on deterministic optimiza-
tion methods, which assume the perfect forecasts of load and
renewable generation. Neglecting those prediction errors could
result in potential violations of operational constraints, such as
bus voltage constraints in VVO-CVR. To consider the impacts
of load and renewable generation uncertainties on voltage reg-
ulation for CVR implementation, stochastic programming (SP)
and robust optimization (RO) are applied in some existing

works [5]–[8]. In [5] and [6], the scenario-based SP methods
aim at optimizing reactive power dispatch for voltage regu-
lation with expected performance and an accurate probability
distribution model. While the SP methods need an accurate
probability distribution model and a large sampling number
of scenarios, it requires heavy computational efforts. In [7]
and [8], the RO methods are developed to handle the uncer-
tain load and renewable generation production. However, the
RO methods can only give a feasible solution for the worst-
case scenario, which is too conservative and hinders the per-
formance of CVR.

In recent years, the distributionally robust optimization
(DRO) has been considered a more effective way to handle un-
certainty in multiple power systems applications, such as eco-
nomic dispatch [9]–[11], power dispatch [12]–[16], unit com-
mitment [17]–[19], and voltage regulation and reactive power
control [20], [21]. The DRO techniques construct an ambiguity
set of probability distributions based on historical data, includ-
ing all possible uncertainty distributions. Thus, the DRO can
ensure that the operational constraints can be satisfied for any
distributions in the ambiguity set built upon the moments of
a probability distribution or structural information. In general,
the ambiguity set of DRO can be constructed by the moment-
based method and metric-based ambiguity set [15]. For exam-
ple, the first two moments (e.g., mean and variance) are used to
build moment-based ambiguity set in [9], [10], [12], [13], [20].
Another type of ambiguity set is constructed by the metric-
based method [11], [16]–[19], [21], where the possible distri-
butions are centered at the reference distribution with a certain
distance metric based on the training samples. The key idea
behind CVR implementation is load demand reduction. There-
fore, we need to consider not only the uncertainty of renewable
generation but also the uncertainty of load demand. However,
some existing metric-based DRO works [11], [16]–[19], [21]
only consider the uncertainty of renewable generation, while
the uncertainty of load demand is neglected. If multiple un-
certainties are considered, the metric-based method may need
more data samples than the moment-based method to construct
ambiguity sets. Conversely, the moment-based DRO methods
can construct the ambiguity set of multiple uncertainties with a
reasonable assumption of distribution [22]. Most of the DRO
methods based on metric-based ambiguity set are computa-
tional intractability and need relaxation transformation to ob-
tain trackable models [23], such as KL-diverge and Wasser-
stein metric ball, which may lead to an infeasible solution [20].
The computational burden of the metric-based DRO model
grows heavily with the number of employed data [24]. Also,
data privacy is another concern in the metric-based method
because all the data need to be broadcasted to each agent in
the system. On the other side, the moment-based DRO model
can construct the ambiguity set with the moment information
more straightforwardly. Furthermore, we incorporate the data
enrichment method to strengthen the moment-based ambiguity
set and reduce the conservativeness of DRO solutions. There-
fore, to take both load and renewable generation uncertain-
ties into account and consider the tradeoff between computa-
tional cost and data availability, we choose the moment-based
method to construct an ambiguity set for CVR implementation.
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Lately, the distributionally robust chance-constrained (DRCC)
models [25], [26] are developed by integrating the chance con-
straints in DRO to enforce certain events within a probability
threshold. Even though DRO and DRCC models have some
advantages over conventional deterministic and stochastic ap-
proaches, there are still challenges to using the DRCC method
for CVR implementation, including how to formulate DRCC
in a tractable way for CVR implementation and how to con-
struct an ambiguity set with limited access to historical and
real-time load/PV data.

(2) Availability of data for constructing ambiguity set of
load and renewable generation uncertainties: Even though
the ambiguity set of uncertainty in DRCC can characterize a
group of possibility distributions, defining a high-quality am-
biguity set is non-trivial, as one needs to decide the tradeoff
between the conservativeness of decisions and the operational
efficiency, while considering the mathematical tractability. To
construct an ambiguity set of uncertainties in DRCC, the con-
ventional way is using statistical inference and data analysis
methods with the historical data and system feedback mea-
surements. For example, the existing DRO works [27] and
[28] use data-based method to construct ambiguity set. How-
ever, the aforementioned data-based ambiguity set relies heav-
ily on either sufficiently high-resolution data or complex ma-
chine learning methods.

(3) Intractable DRCC and nonlinear voltage-dependent load
models: The VVO-CVR problem is nonlinear and intractable,
which makes a distributionally robust stochastic reformula-
tion of the VVO-CVR problem even more challenging. In
[29], an approximation method is proposed for conventional
DRO problems, while the approximation for DRCC problems
is not considered. Also, the loads are considered as voltage-
independent models in above reference of DRO and DRCC
[12], [13], [25], [26]. In practice, the nature of CVR is low-
ering network voltages to reduce the voltage, and the litera-
ture on the CVR problem validates the necessity of voltage-
dependent loads, such as ZIP load and exponential load mod-
els [3]. In existing research works [30] and [31], some ap-
proximation methods are applied to linearize ZIP load model
in deterministic optimization. However, the linearization and
convexification for ZIP load model in DRO or DRCC with un-
certainties of load are not considered in previous works [12],
[13], [25], [26], [29]–[31].

To capture the uncertainties of load and PV generation
through data-based methods in modern distribution networks,
micro-phasor measurement units (PMUs) and smart meters
(SMs) are implemented to record load and PV generation data,
where micro-PMUs1 can record high-resolution data (1-second
resolution or higher), and SMs2 can record low-resolution data
(typically 1-hour resolution). However, due to the cost issue,
micro-PMUs are only installed at limited locations in real dis-
tribution networks, while SMs are widely installed in real dis-

1Micro-PMUs are synchrophasor devices that high-speed record real-time
stamped data measurement of power and energy consumption. Micro-PMUs
have a high sampling rate, e.g., one sample per second or higher [32]

2SMs are electronic devices that record power and energy consumption and
can communicate remotely with utility. SMs have a relatively low sampling
rate compared to micro-PMUs, e.g., one sample per hour [32].

tribution networks. Therefore, the access to available data for
constructing an ambiguity set is limited by the number of
micro-PMUs and SMs. If we only use limited data to con-
struct an ambiguity set, it may hinder the performance of the
DRCC program. The data from SMs and micro-PMUs are nec-
essary but need modification to support our proposed method.
Therefore, we need to enrich the load and PV generation data,
then construct the data-based ambiguity set for uncertainties
of load and PV generation.

To address the above challenges, this paper proposes a
tractable data-based DRCC-CVR model under the uncertain-
ties of voltage-dependent load and PV generation. Inspired
by our previous work [32], we apply the data enrichment
method to both load and PV generation data from SMs and
micro-PMU, then construct the ambiguity set of uncertainties
with the enriched data for the proposed DRCC-CVR. This
data enrichment method enables a strong connection between
the moment-based representation of the limited data set and
the moment-based ambiguity set of the DRCC model, which
avoids over- or under-conservativeness of the decisions. The
main contributions of this paper are three-fold:

• DRCC-CVR model with uncertainties of load and solar
PV generation: To consider the impacts of load and re-
newable uncertainties on voltage regulation and energy-
saving performance of CVR in the unbalanced three-
phase distribution systems, we present a deterministic
VVO-CVR model and extend it by introducing chance
constraints for possible voltage violations due to the load
and the renewable uncertainties. To obtain proper conser-
vative solutions robust to the high-resolution dataset and
ensure a better performance for energy-saving and volt-
age regulation of CVR, we further integrate the chance
constraints with DRO techniques to propose a DRCC-
CVR model. We choose the moment-based method to
construct an ambiguity set for CVR implementation to
consider both load and renewable generation uncertain-
ties and the tradeoff between the computational cost and
the data availability.

• Data enrichment method with limited SM and micro-
PMU data: To guarantee the performance of the data-
based DRCC-CVR model, we leverage the data enrich-
ment method to recover the high-resolution load and PV
generation data from SMs and micro-PMUs. The mo-
ment information of load and PV generation uncertain-
ties are extracted from the enriched data to construct the
moment-based ambiguity sets for the proposed DRCC-
CVR model. The proposed data enrichment can enhance
the relationship between the statistical information of his-
torical data and CVR implementation.

• Tractable reformulation of the DRCC-CVR model: To
make our proposed DRCC-CVR model tractable, we first
present the linearized version of the power flow model
and voltage-dependent ZIP load model that can relieve
the computational burden of the proposed DRCC-CVR
model. Then, we build an ambiguity set with the first
two moment information of load and PV generation prob-
ability distributions extracted from the enriched data and
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input this moment-based ambiguity set of load and PV
generation uncertainties for a tractable reformulation of
DRCC-CVR.

The remainder of the paper is organized as follows: Sec-
tion III discusses the challenges of a classical VVO-CVR and
its DRCC-CVR reformulation and shows the overall frame-
work of our proposed method. Section IV presents the lin-
earized power flow model and voltage-dependent ZIP load
model and shows the tractable reformulation of DRCC-CVR.
Section V introduces a data enrichment method with high-
resolution micro-PMU data and low-resolution SM data and
constructs the data-based moment-based ambiguity set. Sim-
ulation results and conclusions are given in Section VI and
Section VII, respectively.

III. THE PROBLEM FORMULATION AND THE PROPOSED
METHOD

A. Solving a VVO-CVR Problem in the Unbalanced Three-
phase Distribution Networks

In this paper, we consider an unbalanced three-phase radial
distribution network that consists of N buses denoted by a set
N and N − 1 branches denoted by a set E . Let bp(i) denote
the bus that immediately precedes bus i along the radial net-
work headed by the feeder head bus. The three-phase indices
ϕa, ϕb, ϕc are simplified as ϕ. The time instance is represented
by t. Distributed assets are located at different buses, including
voltage-dependent ZIP loads and solar PV distributed genera-
tors. We assume that the customers are either equipped with
SMs or micro-PMUs, which monitor the active and reactive
load power and active PV generation power with proper time
resolution. For each bus i ∈ N , let pZIPi,ϕ,t, q

ZIP
i,ϕ,t ∈ R3×1 denote

the vector of three-phase active and reactive voltage-dependent
ZIP loads at time t. For each bus i ∈ G, let pgi,ϕ,t, q

g
i,ϕ,t ∈ R3×1

denote the vector of three-phase active and reactive power out-
puts of the i-th PV inverter at time t; Vi,ϕ,t ∈ R3×1 repre-
sents the vector of three-phase voltage magnitude at time t,
vi,ϕ,t := Vi,ϕ,t ⊙Vi,ϕ,t ∈ R3×1 represents the vector of three-
phase squared voltage magnitude at time t. For each branch
(i, j) ∈ E , let zij = rij + ixij ∈ C3×3 denotes matrix of
the three-phase impedance of line ij, where rij and xij are
the matrices of the three-phase resistance and reactance, re-
spectively. Let Sij,ϕ,t = Pij,ϕ,t + iQij,ϕ,t ∈ C3×1 denotes
the vector of three-phase apparent power, where Pij,ϕ,t and
Qij,ϕ,t are the vector of three-phase active and reactive power
flow through line ij from bus i to bus j at time t. Let the
line active and reactive power flows, nodal active and reactive
power injections, and squared voltage magnitudes be denoted
by the following column vectors: P = {Pbp(i)i,ϕ,t,∀i, t, ϕ},
Q = {Qbp(i)i,ϕ,t,∀i, t, ϕ}, p = {pi,ϕ,t,∀i, t, ϕ}, q =
{qi,ϕ,t,∀i, t, ϕ}, and v = {vi,ϕ,t,∀i, t, ϕ}. ⊙ and ⊘ denote
the element-wise multiplication and division.

The classic VVO-CVR program can be formulated as a de-
terministic problem (1), which aims to reduce the total power
consumption of the entire distribution network while main-

taining a feasible voltage profile within the predefined bounds
across the distribution network as follows:

min
P,Q,p,q,v

∑
t∈[t,t+T ]

∑
j:0→j

∑
ϕ∈{a,b,c}

Re{S0j,ϕ,t}, (1a)

s.t.

Pij,ϕ,t =
∑

k:j→k

Pjk,ϕ,t − pgj,ϕ,t + pZIPj,ϕ,t + εpij,ϕ,t, (1b)

Qij,ϕ,t =
∑

k:j→k

Qjk,ϕ,t − qgj,ϕ,t + qZIPj,ϕ,t + εqij,ϕ,t, (1c)

vj,ϕ,t = vi,ϕ,t − 2
(
r̄ij ⊙ Pij,ϕ,t + x̄ij ⊙Qij,ϕ,t

)
+ εvi,ϕ,t,

(1d)

pZIPi,ϕ,t = tPL
i,ϕ,t ⊙

(
kpi,1 · vi,ϕ,t + kpi,2 ·

√
vi,ϕ,t + kpi,3

)
,

(1e)

qZIPi,ϕ,t = tQL
i,ϕ,t ⊙

(
kqi,1 · vi,ϕ,t + kqi,2 ·

√
vi,ϕ,t + kqi,3

)
,

(1f)
−Qcap

i,ϕ,t ≤ qgi,ϕ,t ≤ Qcap
i,ϕ,t,∀i ∈ G, (1g)

Qcap
i,ϕ,t =

√
(Scap

i,ϕ,t)
2 − (pgi,ϕ,t)

2,∀i ∈ G, (1h)

vmin ≤ vi,ϕ,t ≤ vmax,∀i ∈ N . (1i)

In objective function (1a), the three-phase active power sup-
plied from the substation of the feeders Re{S0j,ϕ,t} is mini-
mized over a moving finite horizon [t, t+T ] for energy-saving
with CVR implementation. Constraints (1b)-(1d) are defined
by the unbalanced three-phase version of DistFlow model [3].
Constraints (1b) and (1c) guarantee the nodal active and re-
active power balance. Constraint (1d) calculates the voltage
difference between bus i and bus j. The detailed formulations
of nonlinear terms εpij,ϕ,t, εqij,ϕ,t and εvi,ϕ,t can be found in
[4]. If the network is not too severely unbalanced, the voltage
magnitudes between the phases are similar, and the relative
phase unbalances are small [3], then we can use the unbal-
anced three-phase resistance matrix r̄ij and reactance matrix
x̄ij in constraint (1d). More details about r̄ij and x̄ij for unbal-
anced three-phase distribution systems can be referred to [3].
The implementation of CVR requires the modeling of voltage-
dependent ZIP active and reactive loads pZIPi,ϕ,t and qZIPi,ϕ,t, as
shown in (1e) and (1f). tPL

i,ϕ,t, t
QL
i,ϕ,t ∈ R3×1 are the vectors

of three-phase active and reactive load shape multipliers on
bus i at time t, respectively. Note that tPL

i,ϕ,t ∈ [0, 1] and
tQL
i,ϕ,t ∈ [0, 1] are two regularized vectors, which represent the

shapes of active and reactive load demands. kpi,1, kpi,2, kpi,3 and
kqi,1, kqi,2, kqi,3 are constant-impedance (Z), constant-current (I)
and constant-power (P) coefficients for active and reactive ZIP
loads on bus i. Constraint (1g) limits the reactive power out-
put qgi,ϕ,t of the PV inverters by the available reactive power
capacity Qcap

i,ϕ,t. Constraint (1h) calculates Qcap
i,ϕ,t with the total

capacity of the PV inverter Scap
i,ϕ,t and the active power out-

put of PV inverter pgi,ϕ,t. Based on IEEE 1547-2018 Standard
[33], the PV inverters can provide reactive power injection
or absorption qgi,ϕ,t to achieve fast voltage regulation. In this
work, we focus on proposing a CVR model by optimally con-
trolling the injection or absorption of reactive power in the
PV inverters against the uncertainties of loads and renewable
generations. While the dispatches of the on-load tap changers
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(OLTCs) and the capacitor banks (CBs) are slow and limited
by a certain number of switching operations, which cannot
respond to the uncertainties of loads and renewable genera-
tions. To consider the impacts of those conventional voltage
regulation devices on CVR performance, a hierarchical control
method [4] and [34] can be easily implemented to coordinate
PV inverters, OLTC and CBs from different control stages.
Note that the coordination between PV inverters, OLTC, and
CBs is out of the scope of this paper. In constraint (1i), the
squared bus voltage magnitude vi,ϕ,t is limited by vmin and
vmax, which are typically [0.952, 1.052] p.u., respectively.

The deterministic VVO-CVR problem (1) has an underly-
ing assumption that the load and PV generation predictions are
perfect, which means tPL

i,ϕ,t, t
QL
i,ϕ,t in constraints (1e) and (1f),

and pgi,ϕ,t in constraint (1h) are predefined constant parameters.
The more realistic setting is to take the load and PV genera-
tion prediction errors into account. To do this, we can replace
the deterministic parameters tPL

i,ϕ,t, t
QL
i,ϕ,t, p

g
i,ϕ,t by uncertainty

variables. Particularly, we introduce two uncertainty variables
tPL,ξ
i,ϕ,t and tQL,ξ

i,ϕ,t to replace deterministic load shape multipli-
ers tPL

i,ϕ,t and tQL
i,ϕ,t, as shown in (2a) and (2b). We reserve the

super-script ξ to define the random variables, which also ap-
ply to the rest of the definition below. Then, we introduce an
auxiliary variables αq

i,ϕ,t ∈ [−1, 1], which represents the ratio
between reactive power output qgi,ϕ,t and reactive power ca-
pacity. Here, we use Qcap,ξ

i,ϕ,t to represent the square root term√
(Scap

i,ϕ,t)
2 − (pg,ξi,ϕ,t)

2, so that the constraint (1h) can be re-
formulated as constraint (2c).

pZIPi,ϕ,t = tPL,ξ
i,ϕ,t ⊙

(
kpi,1 · vi,ϕ,t + kpi,2 ·

√
vi,ϕ,t + kpi,3

)
, (2a)

qZIPi,ϕ,t = tQL,ξ
i,ϕ,t ⊙

(
kqi,1 · vi,ϕ,t + kqi,2 ·

√
vi,ϕ,t + kqi,3

)
, (2b)

qgi,ϕ,t = αq
i,ϕ,tQ

cap,ξ
i,ϕ,t ,∀i ∈ G. (2c)

We can define a uncertainty variable vector ξi,ϕ,t =

[(tPL,ξ
i,ϕ,t )

⊤, (tQL,ξ
i,ϕ,t )

⊤, (pg,ξi,ϕ,t)
⊤, (Qcap,ξ

i,ϕ,t )
⊤]⊤ to include all the

uncertainty variables. To be simplified, we avoid the indices
of i, ϕ, t in vector ξ. To consider the impacts of uncertainty
ξ on voltage regulation performance, we can extend the de-
terministic maximum/minimum voltage constraint (1i) to two
chance constraints (3a) and (3b) as follows:

P{vi,ϕ,t − vmax ≤ 0} ≥ 1− ϵ (3a)
P{−vi,ϕ,t + vmin ≤ 0} ≥ 1− ϵ. (3b)

where ϵ is a pre-defined risk level of failing to satisfy bus
voltage constraint against uncertainties in ξ. To further make
the solution robust to a group of probability distributions with
controllable conservativeness, we introduce DRO and an ambi-
guity set of uncertainty to chance-constrained CVR and com-
pactly formulate a DRCC-CVR problem (4a)-(4c) [35], [36],
as follows:

min
x

max
ξ∼P∈P

EP{f(x, ξ)}, (4a)

s.t. g1(x) ≤ 0, (4b)
P {g2(x, ξ) ≤ 0} ≥ 1− ϵ, (4c)

where the max function indicates that the decisions are robust
to the worst-case distribution with the ambiguity set, x repre-

Fig. 1. Overall framework of the tractable DRCC-CVR with data enrichment
method and enriched data-based moment-based ambiguity set.

sents the decision variable vector (i.e. reactive power dispatch
of PV inverter), and ξ ∼ P ∈ P in objective (4a) means that
the uncertainty variable vector ξ following the distribution P
within an ambiguity set of distributions P . Constraints (1b)-
(1h) can be represented by the compact constraint (4b) and
the chance constraints (3a) and (3b) can be represented by the
compact constraint (4c).

B. Our Proposed Method

The challenges of solving this DRCC-CVR problem (4a)-
(4c) can be summarized as follows: (i) the nonlinear power
flow model and voltage-dependent ZIP load model, and the
chance constraints with the random variables make the DRCC-
CVR problem (4a)-(4c) intractable to be solved; and (ii) even
though we can reformulate the DRCC problem in a tractable
way, the limited access to the high-resolution load and PV
data will lead to an ill-posed DRCC-CVR problem and hinder
the performance of CVR implementation. To address those
challenges, we propose a solution to address these challenges,
as shown in Fig. 1, which includes the following two parts:

1) Tractable DRCC-CVR model: To reformulate a tractable
DRCC-CVR model, we leverage the linearized Distflow model
[3] and linearized voltage-dependent ZIP load model with Bi-
nominal Approximation method [31]. Then, we reformulate
the chance constraints of voltage by a tractable DRCC model
with a moment-based ambiguity set. Compared to other types
of DRO, the DRCC with a moment-based ambiguity set has
higher computational efficiency for tractable reformulation.
We will show the linearized version of the power flow model
and voltage-dependent ZIP load model, as well as the tractable
reformulation of the DRCC-CVR problem in Section IV.

2) Data enrichment method and moment-based Ambiguity
set: As shown in Fig. 1, there are a large number of service
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transformers that can collect low-resolution load and PV gen-
eration data by SMs, while only a few service transformers
are installed with micro-PMUs with access to high-resolution
load and PV generation data. To capture the uncertainty of load
and PV generation, we use SMs and micro-PMUs to collect
load and PV generation data. Then we enrich the load and PV
generation data and extract the corresponding moment infor-
mation of probability distributions from the enriched load and
PV data. Finally, we can construct the ambiguity set with the
first two moment information, i.e., mean and variance, and im-
plement the ambiguity set in our proposed DRCC-CVR model.
The purpose of introducing the data enrichment method in a
data-based ambiguity set is to avoid potential over- or under-
conservativeness. We will show the data enrichment method
and the construction of a moment-based ambiguity set for
DRCC-CVR in Section V.

IV. TRACTABLE REFORMULATION OF DRCC-CVR
MODEL

This section presents the linearized version of the power
flow model and voltage-dependent ZIP load model and refor-
mulates a tractable version of the DDCC-CVR problem.

A. Linearized Reformulation of Power Flow and Voltage-
Dependent ZIP Loads

In power flow constraints (1b)-(1d), the nonlinear terms
εpij,ϕ,t, ε

p
ij,ϕ,t and εvi,ϕ,t make the optimization problems non-

convex and NP hard. In practice, those nonlinear terms are
much smaller than the linear terms in power flow constraints
(1b)-(1d). Therefore, the constraints (1b)-(1d) can be reformu-
lated as constraints (5a)-(5c) with linearized Distflow model
by neglecting those nonlinear terms.

Pij,ϕ,t =
∑

k:j→k

Pjk,ϕ,t − pgj,ϕ,t + pZIPj,ϕ,t, (5a)

Qij,ϕ,t =
∑

k:j→k

Qjk,ϕ,t − qgj,ϕ,t + qZIPj,ϕ,t, (5b)

vj,ϕ,t = vi,ϕ,t − 2
(
r̄ij ⊙ Pij,ϕ,t + x̄ij ⊙Qij,ϕ,t

)
. (5c)

This linear form of DistFlow has been verified in many pre-
vious studies, such as [3]. The nonlinear term √

vi,ϕ,t of ZIP
loads also introduces non-convexity to the problem. Because
the voltage magnitudes of all buses in a distribution network
stay close to 1 p.u. under normal operating conditions [3] and
[4], the active and reactive ZIP loads can be linearized by Bi-
nominal Approximation Method [31]. Therefore, the squared
deviation of voltage (∆V )2 is very small, so it can be ne-
glected. Then we have the following approximations (6) of
squared voltage magnitude, as follows:

v = V ⊙ V = (1 +∆V )⊙ (1 + ∆V ) ≈ 1 + 2∆V,

v = 1 +∆v ≈ 1 + 2∆V,

∆v ≈ 2∆V, (6)

where v and ∆v are the vectors of squared voltage magnitude
and the derivation from the nominal value, respectively; V and
∆V are the vectors of voltage magnitude and the derivation
from the nominal value, respectively. By introducing equation

(6) and
√
v = V = (1 + ∆V ) to equations (2a) and (2b), we

have the linear approximation of voltage-dependent active and
reactive ZIP loads as follows:

pZIPi,ϕ,t ≈ tPL,ξ
i,ϕ,t ⊙

(
(kpi,1 +

kpi,2
2

)vi,ϕ,t + (kpi,3 +
kpi,2
2

)
)
, (7a)

qZIPi,ϕ,t ≈ tQL,ξ
i,ϕ,t ⊙

(
(kqi,1 +

kqi,2
2

)vi,ϕ,t + (kqi,3 +
kqi,2
2

)
)
. (7b)

B. Tractable Reformulation of DRCC-CVR with Load and Re-
newable generation Uncertainties

To achieve the tractable reformulation of DRCC-CVR, the
power flow constraints (1b)-(1d) can be compactly formulated
as follows:

−AP = p, (8a)
−AQ = q, (8b)

−A0v0 −A⊤v = −2DrP − 2DxQ, (8c)

where A0 and A are the incidence matrices of an unbal-
anced radial distribution network, A0 represents the connec-
tion structure between substation (the feeder head bus) and
each of the line segments in E , A represents the connec-
tion structure between the remaining buses and each of the
line segment in E . v0 is a vector of square nominal volt-
age magnitudes. Dr = blkdiag[Rbp(1)1, ..., Rbp(N)N ] and
Dx = blkdiag[Xbp(1)1, ..., Xbp(N)N ] are block diagonal ma-
trices of line segment resistance and reactance, respectively. In
equations (8a) and (8b), the nodal active and reactive power
injections can be calculated based on ZIP loads and PV gen-
erations. Based on the compact power flow formulations (8a)-
(8c), we have the compact formulation (9) to represent the
relationship between bus voltage v and bus power injections
p and q, as follows:

v = Rp+Xq + ṽ, (9)

with

R = 2[A⊤]−1DrA
−1,

X = 2[A⊤]−1DrA
−1,

ṽ = −[A⊤]−1A0v0.

By introducing PV inverter reactive power output equation
(2c), linearized ZIP load equations (7a) and (7b) as bus power
injections p and q into the compact formulation (9), we have
an equation as shown in equation (10), which represents the
relationship between the vector of squared voltage v and all
the uncertainty variables in vector ξ. Because we have the
load shape multipliers tPL,ξ, tQL,ξ ∈ [0, 1] and the network
resistance and reactance matrices R,X are also small, then
the tPL,ξ

(
Rkp1 +R

kp
2

2

)
and tQL,ξ

(
Xkq1 +X

kq
2

2

)
are much

smaller than identity matrix I , thus the equation (11) is valid.

I−tPL,ξ

(
Rkp1 +R

kp2
2

)
−tQL,ξ

(
Xkq1 +X

kq2
2

)
> 0. (11)

After we introduce the equation (10) into the deterministic
constraint (1g) on bus voltages, and because equation (11)
is valid, we can obtain equation (12), which represents the
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v = R

(
tPL,ξ

(
(kp1 +

kp3
2
)v + (kp3 +

kp2
2
)
)
− pg,ξ

)
+X

(
tQL,ξ

(
(kq1 +

kq3
2
)v + (kq3 +

kq2
2
)
)
− αqQcap,ξ

)
+ ṽ, (10)

impacts of load and PV generation uncertainties on bus voltage
constraints (1i) with vmin and vmax. For simplicity, we also
avoid the indices of i, ϕ, t in equations (10) and (12). The
compact formulation (4c) can be reformulated in a linear form
a(x)⊤ξ+b(x) ≤ 0. We can obtain the formulations of a(x) and
b(x) for chance constraints (3a) and (3b) by introducing the
equation (12) into chance constraints (3a) and (3b). Therefore,
the a(x) and b(x) of chance constraint (3a) can be formulated
as (13a) and (13b), respectively.

a(x) =


diag(vmax)

(
Rkp1 +R

kp
2

2

)
+
(
Rkp3 +R

kp
2

2

)
diag(vmax)

(
Xkq1 +X

kq
2

2

)
+
(
Xkq3 +X

kq
2

2

)
−R

−Xaj

 ,

(13a)
b(x) = ṽ − vmax. (13b)

Similarly, the a(x) and b(x) for another chance constraint
(3b) can be formulated as (14a) and (14b), respectively.

a(x) =


−diag(vmin)

(
Rkp1 +R

kp
2

2

)
−
(
Rkp3 +R

kp
2

2

)
−diag(vmin)

(
Xkq1 +X

kq
2

2

)
−
(
Xkq3 +X

kq
2

2

)
R

Xaj

 ,

(14a)
b(x) = −ṽ + vmin. (14b)

A moment-based ambiguity set of load and PV generation
uncertainties can be constructed in (15), as follows:

Dξ =
{
ξ ∼ P ∈ P : EPξ

[ξ] = µ,EPξ
[ξξT ] = Σ

}
(15)

where µ and Σ represent the mean and covariance of the un-
certain variables of load and PV generation. Finally, based
on equations (13a)-(14b) for a(x) and b(x), we can obtain a
second-order conic reformulation (16) for the DRCC (3a) and
(3b) with moment information, mean µ and covariance Σ of
uncertainty variable vector ξ [35] and [37], as follows: :

a(x)⊤µ+ b(x) +

√
1− ϵ

ϵ
||Σ 1

2 a(x)||2 ≤ 0. (16)

Even though the mean µ and covariance Σ of load and
PV generation in (16) can be extracted from recorded data of
SMs and micro-PMUs, the reality is that we only have limited
access to high-resolution load and PV generation data. The
limited data will lead to the potential ill-posed of DRCC (16),
and further hinder the performance of DRCC-CVR. Therefore,
we introduce a data enrichment method for high-resolution
data recovery and ambiguity set construction in Section V.

V. DATA ENRICHMENT METHOD AND MOMENT-BASED
AMBIGUITY SET

This section presents the data enrichment method to recover
high-resolution data of load/PV for those service transformers
with only SMs. Then, the ambiguity set with moment infor-
mation of probability distributions is constructed based on the
enriched load/PV data. Note that even though the equations in
Section V-A only contain the symbol P , the data enrichment
method is applied for both active and reactive load demand
powers and active PV generation power. In this section, the
term load/PV refers to active/reactive load demand/active PV
generation.

A. Data Enrichment Method with Micro-PMU and SM Data

As shown in Fig. 1, the majority of service transformers
are only installed with SMs to record low-resolution load/PV
data, and only a few service transformers are installed with
micro-PMUs to record high-resolution data. The transformers
that only have SMs can provide utilities with relatively low-
resolution data. In contrast, the transformers with micro-PMUs
can provide utilities with high-resolution data. The purpose of
data enrichment in this section is to probabilistically decom-
pose the low-resolution data into high-resolution data by uti-
lizing the models learned from high-resolution data. To enrich
the data of load/PV, we consider the service transformers with
micro-PMU data as a teacher repository and the service trans-
formers with only SM data as a student repository. Note that
the high-resolution measurements are discretized in this data
enrichment method to train the Markov Chain (MC) models
for statistically learning the transition of load/PV. Discretizing
includes two steps: First, the range between the maximum and
the minimum boundaries of data is evenly divided into multi-
ple contiguous bins (or intervals). Second, the high-resolution
analog measurements are discretized by dividing the measure-
ments by the bin width, and the integer part of the quotient is
selected as the state for the MC model.

The entire enrichment procedure can be divided into two
stages, the training stage and the teaching stage. In the train-
ing stage, the teacher service transformers train two models
capturing the statistical relationship between high-resolution
load/PV data and low-resolution load/PV data. In the teach-
ing stage, the trained models of teacher transformers are then
utilized to perform data enrichment for those student service
transformers with only SMs. The training and teaching stages
both have two steps, which are presented as follows:

Step. I Train the load/PV generation data maximum and
minimum boundary inference models: The first step is to
train probabilistic models using the available high-resolution
load/PV data from teacher service transformers with micro-
PMUs. As discussed earlier, micro-PMUs can record high-
resolution data. Therefore, the average power with a low res-
olution (e.g., an hourly power measurement) corresponds to
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vmin ≤
tPL,ξ

(
Rkp3 +R

kp
2

2

)
+ tQL,ξ

(
Xkq3 +X

kq
2

2

)
+Rpg,ξ +XαqQcap,ξ + ṽ

I − tPL,ξ
(
Rkp1 +R

kp
2

2

)
− tQL,ξ

(
Xkq1 +X

kq
2

2

) ≤ vmax, (12)

a high-resolution time series. For a time series within a par-
ticular period, there exists one average, one maximum, and
one minimum. According to real data, the maximum/minimum
can be much different from the average due to the uncertainty
of instantaneous load/PV. The Gaussian Process Regression
(GPR) technique [32] is used to capture the relationship be-
tween the maximum/minimum bounds and the average values
for load/PV. More specifically, two GPR models GPR∗

s,1 and
GPR∗

s,2 are trained for the s-th teacher service transformer:

GPR∗
s,1 : Pa(t) → P (t), (17a)

GPR∗
s,2 : Pa(t) → P (t), (17b)

where Pa(t) denotes the average load/PV over the t-th hour,
P (t) and P (t) denote the upper and lower bounds of instan-
taneous load/PV within the t-th hour, respectively. These two
trained models can infer the upper and lower bounds given
a known average load/PV for those service transformers that
only have SMs.

Step. II Train the load/PV generation variability inference
models: The second step is to model the probabilistic transi-
tion of instantaneous load/PV within their maximum and min-
imum bounds using the second-order MC model. The reason
for selecting the MC model is that according to real high-
resolution data, the variability demonstrates the characteristics
of the Markov process. Specifically, one MC model MC∗

s is
trained for each service transformer:

MC∗
s : {Pt(m− 2), Pt(m− 1)} → Pr(Pt(m)), (18)

where Pt(m− 2), Pt(m− 1), and Pt(m) denote the (m− 2)-
th, (m − 1)-th, and m-th high-resolution load or PV genera-
tion samples within the t-th hour. Formulation (18) outputs the
probability of Pt(m) based on Pt(m−2) and Pt(m−1). Note
that Step. I and II build the load/PV data boundary inference
models and the load/PV data variability inference models with
a small number of high-resolution micro-PMU data of teacher
service transformers. The trained MC models can probabilisti-
cally infer the variability of instantaneous load/PV within the
inferred bounds from Step I. Steps. III and IV will extend
the trained load/PV probabilistic models to service transform-
ers with only SMs, so it recovers the high-resolution load/PV
data masked by the low-resolution load/PV data.

Step. III Determine the learning weights of student service
transformers with respect to teacher service transformers: The
third step evaluates the low-resolution data similarity between
the teacher with micro-PMUs and student service transform-
ers with SMs by determining the learning weights as shown
in (19a) and in (19b), respectively. The weights Ws and W ′

s

can represent the confidence of a student service transformer
to learn from multiple teacher service transformers for enrich-
ing the low-resolution data to high-resolution data. Intuitively,

for example, the high-resolution load data of a service trans-
former with a larger number of customers is less volatile than
a service transformer supplying a relatively smaller number of
customers. The weights are computed as follows:

Ws =
W ′

s∑Nt

s=1 W
′
s

, (19a)

W ′
s =

1

NcNs
c

Nc∑
i=1

Ns
c∑

j=1

||Pi − P s
j ||, s = {1, ..., Nt}, (19b)

where Nc and Ns
c denote the number of customers served

by a student service transformer and the s-th teacher service
transformer, respectively. We can obtain Nc daily load/PV pat-
terns for that service transformer, {P1, · · · , PNc}. Similarly,
the load/PV patterns for the s-th teacher service transformer
are denoted by {P s

1 , · · · , P s
Ns

c
}, s = 1, · · · , Nt. The weights

are used to linearly combine the estimated bounds in (17) and
the probabilistic transition matrices in (18).

Step. IV Extend the trained load/PV generation data prob-
abilistic model: The fourth step extends the trained probabilis-
tic models of teacher service transformers in Steps. I and II
to student service transformers that only have SMs for enrich-
ing low-resolution load/PV data. Specifically, the m-th high-
resolution load/PV sample is randomly generated based on the
following Bernoulli distribution:

Pt(m) ∼ Be(Pr(Pt)), (20)

where Be denotes the Bernoulli distribution [32]. Note that
for each hourly load/PV sample, (20) can give us N ’ high-
resolution samples, i.e., Pt(m),m = 1, · · · , N ′. Then, the en-
riched high-resolution data samples are employed to optimize
the mean and standard deviation of Gaussian distribution using
maximum likelihood estimation:

(µ∗,Σ∗) = argmin
µ,Σ

N ′∏
m=1

f(µ,Σ;Pt(m)), (21)

where f(·) denotes the probability density function of Gaus-
sian distribution. Therefore, the mean and covariance of
load/PV uncertainties µ and Σ can be extracted from enriched
data in (21) for the construction of the moment-based ambi-
guity set (15). i.e., substitute µ∗ and Σ∗ in (21) into (16).
Note that Step-I and II learn two models that can capture
the high-resolution variations based on high-resolution data of
services transformers installed with micro-PMUs. Step-III and
IV extend the learned models to those transformers that only
have SMs for recovering the high-resolution variations hidden
behind the low-resolution data. Therefore, the high-resolution
variations of load/PV have already been considered in this data
enrichment method.
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Algorithm 1 DRCC-CVR Model with Enriched-based Ambi-
guity Set of Uncertainty of Load and PV Generation

1: Input: High-resolution data from micro-PMUs and low-
resolution data from SMs

2: Initialization: Choose hyper-parameters in DRCC-CVR
3: For: i = 1, 2, ..., N .
4: Train load/PV upper and lower boundary inference models

from teacher service transformers with micro-PMUs by
(17a) and (17b).

5: Train load/PV variability inference model from teacher
service transformers with micro-PMUs by (18).

6: Determine the learning weights of student service trans-
formers with respect to teacher service transformers in
(19a) and (19b).

7: Extend the trained load/PV data to student service trans-
formers with SMs in (20).

8: End for.
9: Extract the first two moment information of load/PV un-

certainties from enriched data in (21)
10: Construct an ambiguity set with the first two moment in-

formation in (15).
11: Solve the DRCC-CVR problem (22) with the objective

function (1) and the constraints (2c),(5),(7), (13)-(14), and
(16).

12: Output: Reactive power dispatches of PV inverters

B. Enriched Data-Based Ambiguity Set and DRCC-CVR
Method

The enriched high-resolution data from (20) can recover in-
stantaneous uncertainties of load/PV, which can be further ex-
tracted for the two moment information and construct moment-
based ambiguity set in (15). By considering the data enriched
moment-based ambiguity set and the reformulation of tractable
DRO and chance constraints, the DRCC-CVR problem can be
compactly reformulated as follows:

Objective
ξ∈Dξ

(1), (22a)

s.t. PV generations {(2c)} , (22b)
OPF constraints {(5)} , (22c)
Linearized ZIP loads {(7)} , (22d)
Tractable reformulation of DRCC {(13)− (14), (16)} .

(22e)

Note that problem (22) is a tractable problem with lin-
ear constraints (22b)-(22d) and second-order constraint (22e),
where the mean values of load and PV are used in compact
constraints (22b)-(22d) and the mean and covariance values
of load/PV are used in the compact constraint (22e) of DRCC
reformulation. To summarize the above steps, the detailed pro-
cedure of the proposed DRCC-CVR with an enriched-based
ambiguity set of the uncertainties of load/PV is shown in Al-
gorithm 1.

VI. CASE STUDIES

This section presents the simulation results, including the
enriched data of load/PV for ambiguity set, comparison re-

Fig. 2. A real distribution feeder in Midwest U.S. [38]

sults of the benchmark methods and the proposed DRCC-CVR
method, and the impacts of hyper-parameter on the proposed
DRCC-CVR method.

A. Simulation Setup

A real-world distribution feeder [38] in Fig. 2 is used to
test our proposed DRCC-CVR method, which is located in
Midwest U.S. and shared by our utility partner. The reason
for choosing this real-world distribution feeder as our test
system is that the service transformers of customers in this
feeder are either equipped with SMs or micro-PMUs, which
can record low-resolution (1-hour) data and high-resolution
(1-second) data to construct an ambiguity set of load/PV un-
certainties for our DRCC-CVR method. More information on
this real-world distribution feeder and the data from SMs and
micro-PMUs can be found in [38]. In Fig. 2, the yellow bot-
ted boxes represent the buses’ service transformers installed
with micro-PMUs, and the rest buses’ service transformers
are installed with SMs; the blue dots represent the buses in-
stalled with single-phase or three-phase PV generators; the
solid, dashed and dotted lines represent three-phase overhead
lines, three-phase underground cables and single-phase over-
head lines, respectively. In this real-world distribution feeder,
the total capacity of PVs can serve nearly 25% of the total load
demand. Adopted from our industrial partner [4], we use the
following coefficients [kp1 , k

p
2 , k

p
3 ] = [0.96,−1.17, 1.21] and

[kq1, k
q
2, k

q
3] = [6.28,−10.16, 4.88] for active and reactive ZIP

loads in our test cases. Because most of the customers in this
real-world distribution feeder [38] are residential loads. There-
fore, we use those ZIP coefficients for all loads in the follow-
ing simulation cases. The base voltage and base power val-
ues are 13.8 kV and 100 kVA, respectively. The prescribed
risk level parameter ϵ is set to 0.05 for quantifying the 5%
violation probability of chance constraints in our proposed
DRCC-CVR model. We demonstrate the advantages and ef-
fectiveness of the enriched data-based ambiguity set and the
proposed DRCC-CVR method through numerical comparisons
of several benchmark methods. The following simulations are
built-in MATLAB R2019b, which integrates YALMIP Tool-
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box with IBM ILOG CPLEX 12.9 solver for optimization. All
case studies are simulated on a PC with Intel Core i7-4790 3.6
GHz CPU and 16 GB RAM.

B. The proposed data enrichment method and benchmark data
enrichment methods

We have compared our proposed data enrichment method
with two benchmark data enrichment methods: the method
of adding random noise to typical or known load profiles
[39] and the allocation-based method [40]. For conciseness,
we refer to the method presented in [39] as the noise-based
method. The basic idea of the noise-based method is adding
random noise to a low-resolution load measurement for gener-
ating multiple high-resolution load samples. For the allocation-
based method, there are two primary steps [40]. First, a low-
resolution substation- or feeder-level load profile is scaled
to obtain service transformer-level load profiles, according
to transformer capacity or peak load. Then, the scaled low-
resolution load profile is enriched using a variability library,
which is constructed by applying the discrete wavelet trans-
form algorithm to known high-resolution transformer-level
load measurements. An alternative of the foregoing scaled
low-resolution load profile is a load pattern obtained by scal-
ing typical load profiles of other transformers, as presented in
[40]. The performance of the noise-based method, allocation-
based method, and our method is shown in Fig. 3(a), Fig.
3(b), and Fig. 3(c), respectively, where the actual and enriched
load curves on a certain day are presented. We can observe
that the allocation-based load enrichment method cannot ac-
curately track the basic load pattern, as demonstrated in Fig.
3(b). The reason is that the low-resolution load curve derived
from the substation, feeder, or other transformers, might not
match the actual load profile of a particular service transformer
because each transformer can have a distinct load signature.
Fig. 3(a) shows the actual high-resolution load curve and the
noise-based load curve obtained by adding Gaussian noise to
a known low-resolution load profile. One primary shortcom-
ing of the noise-based method is that it cannot capture the
cyclicity of the load state, i.e., the enriched load curve clut-
ters the plot and does not present a clear switching between
different load states. In contrast, in Fig. 3(c), we can observe
that the basic pattern of the enriched high-resolution load ob-
tained from our proposed data enrichment method can flexibly
follow the actual load variation, despite load uncertainty. The
superior performance of our method results from two aspects:
the fine spatial granularity of smart meter data and the design
of the load boundary inference process.

The performances of the noise-based and allocation-based
methods can also be evaluated by examining the computed
R2 values, as shown in Fig. 4 and Fig. 5. We can observe
that the R2 values are negative, which means that the esti-
mated maximum/minimum bound offers a poor explanation
for the variations of the actual maximum/minimum bound.
The unsatisfying performance of the allocation-based method
can also be viewed by observing the two scatter plots in Fig.
5, where most data points are located above the upper-right
diagonal line, which means an overestimation of the actual

Fig. 3. The actual high-resolution load curve and the enriched load curves:
(a) The actual curve and the enriched curve obtained using the noise-based
method; (b) The actual curve and the enriched curve obtained using the
allocation-based method; (c) The actual curve and the enriched curve ob-
tained using our method.

load bounds. Note that the scatter plots contain all the hourly
maximum/minimum loads over the entire time period of the
dataset, not only the loads during a particular day. This is be-
cause one day only has 24 scatters, which is insufficient for
creating a comprehensive scatter plot. In contrast, the two R2

values obtained from our method are 0.80 and 0.83, which
demonstrates the accuracy of our method. To further evaluate
the performances of our method and the other two methods,
we have also computed the cumulative probability of the ac-
tual and enriched load presented in Fig. 3. The empirical cu-
mulative distribution functions (ECDFs) are illustrated in Fig.
6, where we can observe that the ECDF corresponding to our
method is much closer to the ECDF of the actual load than the
ECDFs corresponding to the allocation-based and the noise-
based methods. To quantitatively assess the similarity between
two ECDFs, we have computed the two-sample Kolmogorov-
Smirnov (KS) statistic for each method, as follows:

D = sup
P

|Fa(P )− Fe(P )|, (23)

where sup denotes the supremum of the set of distances.
Fa(P ) denotes the ECDF of the actual high-resolution load,
and Fe(P )denotes the ECDF of the enriched load. Intuitively,
D measures the largest pairwise absolute distance between the
ECDFs of the actual load and the enriched load. In Fig. 6, we
can observe that the two-sample KS statistic for our method
is 0.14, which is significantly smaller than the statistic for the
allocation-based method and the noise-based method, i.e., 0.40
and 0.32, respectively.
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Fig. 4. The load bounds obtained from the noise-based method against the
corresponding actual values: (a) Maximum; (b) Minimum.

Fig. 5. The load bounds obtained from the allocation-based method against
the corresponding actual values: (a) Maximum; (b) Minimum.

C. Original and Enriched Data of Load and PV Generation

As shown in Fig. 2, there are 8 service transformers in-
stalled with micro-PMUs and the rest 34 service transform-
ers installed with SMs, which can record high-resolution (1-
second) and low-resolution (1-hour) load and PV generation
data, respectively. In this sub-section, we use two ways to ob-
tain the mean and covariance of the uncertainty variables of
load and PV generation for ambiguity sets: (i) we use a statis-
tical method to obtain mean and variance information of the
original load and PV generation data (few high-resolution data
from 8 micro-PMUs and a lot of low-resolution data from 34
SMs). (ii) We use the data enrichment method to enrich the
original load and PV generation data, then obtain mean and
variance information of the enriched data. To verify the effete-
ness of the data enrichment method, we show the empirical
distributions and their according fitted Gaussian distributions
of active load, reactive load, and active power output of PV
generation at 20:00 PM as examples, in Fig. 7 and Fig. 8,

P (kW)

Actual
Our Method
Allocation-based
Noise-based

D = 0.14

D = 0.40

D = 0.32

Fig. 6. Cumulative probability distributions of the actual load and the enriched
load.

Fig. 7. Empirical distribution and fitted Gaussian distribution: (a) active load
(original high-solution data); (b) active load (enriched data); (c) reactive load
(original high-solution data); (d) reactive load (enriched data).

Fig. 8. Empirical distribution and fitted Gaussian distribution: (a) PV gener-
ation (original high-solution data); (b) PV generation (enriched data).

respectively. Note that the distributions in the right and left
columns of Fig. 7 and Fig. 8 are obtained from original high-
resolution data and enriched data, respectively. In our dataset,
we know the original low-resolution data recorded by SMs,
and we also know the original high-resolution data recorded
by metering devices installed by the utility for the purpose
of validation. Note that in practice, only those service trans-
formers with micro-PMUs have known high-resolution data.
Therefore, the original high-resolution data is not known in
practice if no extra metering devices are installed for valida-
tion. In addition, our approach can provide us with enriched
high-resolution data by decomposing low-resolution SM data.
In Fig. 7 and Fig. 8, each dot denotes the hourly average power
corresponding to the data samples, which means the hourly
power is the average of observations. It can be observed that
the distributions obtained from enriched data have a highly
similar fitting to the distributions obtained from original data.

To quantitatively evaluate the difference between the fit-
ted Gaussian distributions from original high-resolution data
and from the enriched data, we have computed the mean and
standard deviation for those two types of data. We have also
considered the mean from the original low-resolution data. We
select the active load power at 20:00 PM as an example, as
shown in Table I. We can observe that, due to the low (hourly)
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TABLE I
COMPARISON OF FIRST TWO MOMENT INFORMATION BETWEEN

DIFFERENT DATA SETS.

First two
moment information

Original low-
resolution data

Original high-
resolution data

Enriched
data

Mean (kW) 73.0094 71.0915 70.5611

Standard deviation (kW) - 7.3839 6.3381

time resolution, the variance of active load cannot be obtained
from original low-resolution data, which cannot capture the
uncertainty of data. The differences between the original high-
resolution data and the enriched data in terms of mean and
standard deviation are small, which demonstrates the satisfying
performance of our approach. Therefore, the first two moment
information extracted from enriched data can also accurately
construct the ambiguity set for the DRCC-CVR method.

D. Voltage Reduction and Power/energy-saving Through CVR
Implementation

To serve as a reference to investigate the performance of
VVO-CVR, a base case is first built by setting the unity-power
factor control model for all PV generators, which means there
is no reactive power support from PV generators. In this sub-
section, we use two ways to implement VVO-CVR: (i) The
robust VVO-CVR (RO-CVR) is solved by the robust optimiza-
tion [7] and [8], where the uncertainties of load and PV gener-
ation are considered with 10% variance from the predictions.
(ii) The VVO-CVR is solved by our proposed DRCC-CVR
with an enriched data-based ambiguity set of load and PV
generation uncertainties. The performance through CVR im-
plementation can be evaluated from three aspects: voltage pro-
file, active power supply from the substation, and total energy
consumption. To show the time-series simulation, the VVO-
CVR is performed in a daily operation of the real-world dis-
tribution feeder with different control strategies. In Fig. 9, the
voltage profiles for a selected bus (bus 23 on phase c) are
shown, which are generated from the base case (without con-
trol) and the proposed DRCC-CVR. In Fig. 9, the blue bar
and red bar represent the voltage profiles of the base case and
DRCC-CVR, respectively. It can be observed that all the nodal
voltages can maintain within the predefined range [0.95,1.05]
p.u., while the voltage profiles of DRCC-CVR are overall
lower than the voltage profiles of the base case. Because the
DRCC-CVR can optimally dispatch the reactive power from
PV inverters to achieve maximum voltage reduction while still
satisfying the voltage constraints. During the midnight period
from 00:00 to 6:00, the voltage reduction of DRCC-CVR is
obviously higher than the voltage reduction of the base case,
as shown in the circled part in Fig. 9. It is because the active
power outputs of PV generators from 00:00 to 6:00 are nearly
zero, and according to the calculations of reactive power output
and capacity in constraints (1g) and equation (1h), the DRCC-
CVR has more reactive power supports to maximize voltage
reductions. Also, our model considers not only the uncertain-
ties from PV generations but also the load uncertainties. At

00:00 06:00 12:00 18:00 24:00
Time (hr)

0.995
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Fig. 9. Voltage profiles on selected bus 23 on phase c with different control
strategies.

night, the load uncertainties might have more significant vari-
ations than the nighttime duration.

The active power supplies from the substation of the base
case, RO-CVR, and DDRC-CVR are shown as different curves
in Fig. 10, which represent the overall active power consump-
tion of the base case and those VVO-CVR benchmarks. It can
be observed that the proposed DDRC-CVR can effectively re-
duce the power supply from the substation compared to the
base case and other methods. In comparison, the power sav-
ing of RO-CVR is less than the proposed DDRC-CVR. On
the one hand, the proposed DDRC-CVR has an ambiguity set
of uncertainties to balance the tradeoff between the conserva-
tiveness of decisions and operational efficiency. The numerical
comparisons of total energy consumption over one day and the
energy reduction percentage are presented in Table II among
base case, RO-CVR, and DDRC-CVR. The total energy con-
sumption of base case, RO-CVR, and DRCC-CVR are 958.045
kWh, 934.178 kWh, and 898.616 kWh, respectively. There-
fore, compared to the original energy consumption in the base
case, the energy savings of RO-CVR and DRCC-CVR can
achieve 2.491% and 6.203%, respectively. The computational
times of RO-CVR and DRCC-CVR for this test system are
18.312 seconds and 21.911 seconds, respectively.

According to the above results in Fig. 9, Fig. 10 and Ta-
ble II, we can summarize the differences between RO-CVR
and DRCC-CVR: (i) Compared to 934.178 kWh and 2.491%
of RO-CVR, DRCC-CVR can achieve the lower total energy
consumption 898.616 kWh and higher energy saving 6.203%.
On the one hand, RO-CVR is too conservative and hinders
the performance of CVR implementation. On the other hand,
the proposed DDRC-CVR can better explore the potential of
CVR implementation. (ii) Because of the different ways of
handling uncertainties of load and PV generation, the compu-
tation time of 21.911 seconds of DRCC-CVR is slightly slower
than the computation time 18.312 seconds of RO-CVR. How-
ever, their differences in computational time are very small,
which can be neglected for a day-ahead operational applica-
tion. Thus the computational efficiency of the DRCC-CVR
can be acceptable. Note that no matter whether the timescale
of DRCC-CVR is long or short, it will not make the distri-
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Fig. 10. Substation feed-in active power with different control strategies.

TABLE II
ENERGY CONSUMPTION AND ENERGY-SAVING RESULTS WITH

DIFFERENT CONTROL STRATEGIES

Energy (kWh) Reduction (%) Computation (sec)

Base Case 958.045 - -
RO-CVR 934.178 2.491% 18.312
DRCC-CVR 898.616 6.203% 21.911

butions in the data enrichment stationary or causes any com-
munication issue. As shown in the pseudo-code Algorithm 1,
the high-resolution data from micro-PMU and low-resolution
data from SMs are transferred into the data enrichment method
(row 3 to row 8), then the first two moment information of
load and PV uncertainties are extracted from the enriched data
(row 9) and the ambiguity set can be constructed by the first
two moment information (row 10). Finally, the DRCC-CVR
with ambiguity set is solved (row 11). Even though the mean
and covariance trajectories from the data enrichment method
are received by the DRCC-CVR formulation, the results from
the DRCC-CVR formulation are not feedbacked to the data
enrichment method.

E. Impact of Hyper-Parameters in Performance of DRCC-
CVR

It is clear that a larger number of micro-PMUs can capture
more high-resolution variations of load demands and PV gen-
eration. To further demonstrate the advantage of having micro-
PMU measurements with a data-enriched process, we show
a comparison study under different numbers of micro-PMUs
using the proposed DRCC-CVR algorithm, whose results are
given in Table III. There are three different tests: the first test
only constructs the ambiguity set based on low-resolution data
from SMs without any high-resolution data from micro-PMU;
the second test implements the data enrichment method with
high-resolution data from 4 micro-PMUs and low-resolution
data from SMs, then the ambiguity set is constructed based on
the enriched data; the third test has the high-resolution data
from 8 micro-PMUs as the same setting in Section V-B and
Section V-C. The case having high-resolution data as inputs

TABLE III
ENERGY CONSUMPTION AND ENERGY-SAVING RESULTS WITH

DIFFERENT NUMBER OF MICRO-PMUS.

Number of
micro-PMUs

Location of
micro-PMUs

Energy
(kWh)

Saving
(%)

0 (only SM data) - 933.889 2.521%

4 B18, B25, B41, B60 927.817 3.155%

8
B18, B25, B31, B41

B48, B52, B56, B60
898.618 6.203%

TABLE IV
ENERGY CONSUMPTION AND ENERGY-SAVING RESULTS WITH

DIFFERENT VIOLATION RATES.

Energy (kWh) Reduction (%)

ϵ = 0.02 904.980 4.803%
ϵ = 0.05 898.616 6.203%
ϵ = 0.1 894.754 6.606%

to construct the ambiguity sets eventually achieves a better
performance of CVR implementation through DRCC-CVR.

The pre-defined risk level ϵ is selected as 0.05 in the above
simulation tests. While the different values of ϵ will influence
the confidence level on chance constraints in the proposed
DRCC-CVR and further influence the benefits of CVR imple-
mentation. Therefore, we also test the DRCC-CVR with three
different violation rates (i.e., 0.02, 0.05, 0.1), as shown in Ta-
ble IV. It can be observed that a larger value of ϵ leads to lower
energy consumption and a higher energy reduction, which will
benefit the CVR implementation. However, this kind of benefit
is achieved by increasing the violation rate and sacrificing the
reliability of operational constraints. For example, the energy
reduction (6.606%) of ϵ = 0.1 is only slightly higher than the
energy reduction (6.203%) with ϵ = 0.1. However, when the
violation rate ϵ increases from 0.05 to 0.1, theoretically, the
risk of constraint violation will also become higher. The re-
sults indicate that there is a tradeoff between the maximization
of CVR benefit and the reliability of operational constraints
in the proposed DRCC-CVR.

VII. CONCLUSION

To better consider the impacts of load and PV genera-
tion uncertainties on voltage regulating performance while im-
plementing CVR in unbalanced three-phase distribution sys-
tems, a DRCC-CVR model with an enriched data-based and
moment-based ambiguity set is proposed to optimally dispatch
the reactive power of PV inverters. The original and intractable
DRCC-CVR is approximated by linearized ZIP load models
and reformulated in a tractable way with the first two moment
information of load and PV generation uncertainties. We fur-
ther implement a data enrichment method with low-resolution
data from SMs and high-resolution data from micro-PMUs to
recover instantaneous uncertainties of load and PV generation.
An ambiguity set is constructed based on enriched data for
DRCC-CVR. Simulation results on a real Midwest U.S. dis-
tribution feeder have validated the effectiveness and robustness
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of the proposed DRCC-CVR. According to the case studies,
we have shown that: (i) The data enrichment can construct
an accurate ambiguity set of load and PV generation uncer-
tainties. (ii) Compared to 2.491% energy saving of RO-CVR,
the proposed DRCC-CVR can reach a higher 6.203% energy
saving, which means the proposed DRCC-CVR can achieve
better CVR performance and show a better tradeoff between
the conservativeness of decisions and operational efficiency.
(iii) By comparing different numbers (0, 4, and 8) of micro-
PMUs in the data enrichment method, it can be observed that
a high-quality ambiguity set can be constructed with a higher
number of micro-PMUs for DRCC-CVR and better perfor-
mance of CVR can be achieved. (iv) By increasing the con-
fidence level from 0.02 to 0.1, the total energy consumption
and energy saving change from 904.98 kWh to 894.754 kWh
and 4.803% to 6.606%. Theoretically, the risk of constraint vi-
olation will become higher with a larger value of confidence
level. Therefore, a proper risk and confidence level needs to
be tuned in DRCC- to consider the tradeoff between CVR
implementation and the reliability of operational constraints.

A certain level of temporal and spatial correlation of loads
and PVs have been considered by the moment information in
our data enrichment and DRCC-CVR methods. Our proposed
DRCC-CVR method is implemented in the primary distribu-
tion network, which means the loads and PV generations in the
secondary distribution networks have been aggregated into the
nodal level of the primary distribution network. Even though
a moment-based approach with a data enrichment method is
good enough to consider the temporal and spatial correlation
of load and PV uncertainties and implement DRCC-CVR in
the primary distribution network. Future work still needs to be
done to further consider the temporal and spatial correlations
of load and PV generation uncertainties. The smart meter and
micro-PMU data can be better utilized by exploring other al-
ternatives to construct an uncertainty set and implement the
DRCC-CVR method, e.g., by using a minimum volume en-
closing convex hull uncertainty set [41] or f-divergence ambi-
guity set [42] instead of a moment-based ambiguity set.
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