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a b s t r a c t 

In light of current energy policies responding to rapid climate change, much attention has been directed to devel- 
oping feasible approaches for transitioning energy production from fossil-based resources to renewable energy. 
Although existing studies analyze regional dispatch of renewable energy sources and capacity planning, they do 
not fully explore the impacts of the energy storage system technology’s technical and economic characteristics on 
renewable energy integration and energy transition, and the importance of energy storage systems to the energy 
transition is currently ignored. To fill this gap, we propose an integrated optimal power flow and multi-criteria 
decision-making model to minimize system cost under operational constraints and evaluate the operational per- 
formance of renewable energy technologies with multidimensional criteria. The proposed method can identify 
the most critical features of energy storage system technologies to enhance renewable energy integration and 
achieve New York State’s climate goals from 2025 to 2040. We discover that lead-acid battery requires an addi- 
tional 38.66 GW capacity of renewable energy sources than lithium-ion battery to achieve the zero carbon dioxide 
emissions condition. Based on the cross-sensitivity analysis in the multidimensional evaluation, the vanadium re- 
dox flow battery performs the best, and the nickel-cadmium battery performs the worst when reaching the zero 
carbon dioxide emissions target in 2040. The results of the proposed model can also be conveniently generalized 
to select ESS technology based on the criteria preferences from RE integration and energy transition studies and 
serve as a reference for ESS configurations in future energy and power system planning. 
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. Introduction 

Climate change remediation through the improvement of energy sec-
ors has been pushed into the global agenda, given their low carbon
ioxide (CO 2 ) emissions allowance approved by the Paris Agreement
1] . However, global direct primary energy consumption has doubled
rom 270.5 EJ in 1978 to 580 EJ in 2018, and fossil-based electricity
eneration still occupies 85% of the total primary energy consumption
2] . Although the energy transition from fossil fuels to renewable energy
RE) sources is ideally feasible, the integration of RE into the power sys-
em is still hindered due to RE’s unreliable and intermittent features [3] ,
hich makes it difficult to maintain power supplies that are as reliable
s fossil-based generators [4] . To achieve the energy transition goal, RE
enetration in the power system is inevitable [5] . Therefore, studying
he improvement of RE integration in a reliable way has become the
urrent research’s focus. Among all the possible solutions to strengthen
E integration, combining RE and energy storage systems (ESSs) [6] has
ained the most attention since it systematically and fundamentally sta-
ilizes RE generation by reducing energy dispatch fluctuations [7] and
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eak generation pressures [5] . In addition, some studies indicate that
he reliance on ESSs is growing significantly along with the increasing
E penetration [8] . For instance, a total of 43 TWh of ESS is required in

he national power grid in the United Kingdom to reach 100% RE pene-
ration [9] . Hence, the impact of ESS technology on the power system is
remendous due to its high installation requirements for RE integration.
he main factors in ESS technologies that directly affect power system
peration can be classified as technical and economic characteristics,
hich are significantly determined by the materials and mechanisms of
SS technologies [6] . For instance, lithium-ion batteries (LIBs) [10] and
odium-sulfur batteries (NASBs) [11] have different mechanisms and
fficiencies for charging and discharging power. Therefore, analyzing
he ESS operational performance along with the inherent technical and
conomic characteristics, such as discharge ratio and capital cost, can
rovide insights into how different ESS technologies affect power system
perations [12] and RE integration strategies [13] to fulfill energy tran-
ition goals. Additionally, both ESS’s technical and economic properties
hould be considered critical factors to enhance RE integration consid-
ring the ESSs are crucial in supporting RE integration in the energy
853, USA. 
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Nomenclature 

List of Abbreviations 

AHP analytical hierarchy process 
BESS battery energy storage system 

CAES underground compressed air energy storage 
CLCPA Climate Leadership and Community Protection Act 
DOD depth of discharge 
EMS energy management system 

ESS energy storage system 

EV electric vehicle 
FES flywheel energy storage 
HES hydrogen energy storage 
LAB lead-acid battery 
LCA life cycle assessment 
LIB lithium-ion battery 
MCDM multi-criteria decision-making 
NASB sodium-sulfur battery 
NGCC natural gas combined cycle 
NGCT nature gas combustion turbine 
NGST nature gas steam turbine 
NICDB nickel-cadmium battery 
NREL National Renewable Energy Laboratory 
NYC New York City 
NYISO New York Independent System Operator 
NYS New York State 
O&M operation and maintenance 
OPF optimal power flow 

PHS pumped hydro storage 
PS power system 

PSB polysulfide bromine flow battery 
RE renewable energy 
RTO regional transmission organization 
SCES supercapacitor energy storage 
SMES superconducting magnetic energy storage 
TES thermal energy storage 
VRFB vanadium redox flow battery 
ZNBRB Zinc-bromine battery 

Sets 

B set of buses 
E set of ESS technologies 
L set of transmission lines 
R set of energy carriers 
S set of load projections 
SS set of scenarios 
T set of timeslots 
Y set of representative years 

Parameters 

𝛼 line extension factor 
BB susceptance of line (ohm 

− 1 ) 
c unit cost ($/per unit) 
D generator unit CO 2 emissions (ton/MWh) 
CEL annual CO 2 emissions limit (ton) 
𝑔 availability of generators 
H extension/expansion threshold 
𝜂 charge/discharge ratio 
RP renewable energy penetration 

Continuous variables 

N accumulated cycling numbers 
EL energy level (MW) 
C annual cost ($) 
M installed capacity (MW) 
E  

2 
P power (MWh) 
𝜃 voltage phase Angle ( o ) 

Discrete variables 

X retirement/replacement indicator 
z charge/discharge indicator 

Subscripts and superscripts 

AP apparent power 
b bus 
cyc cycling efficiency 
disc discharge efficiency 
d CO 2 emission social cost ($) 
e ESS technology 
eis ESS in-service year 
elt ESS lifetime limit 
EC energy storage system capital cost ($) 
EF energy storage system fix O&M cost ($) 
EP net equipment cost ($) 
ER energy storage system retirement cost ($) 
ESS energy storage system 

EV energy storage system variable O&M cost ($) 
EX existing generator 
F flow 

G generator 
GC generator capital cost ($) 
GF generator fix O&M cost ($) 
GR generator retirement cost ($) 
GV generator variable O&M cost ($) 
i, j transmission line between bus i and j 
is in-service 
LD load 
l transmission line 
lmt limitation 
OPR net operational cost ($) 
r generator carrier 
RE renewable energy 
s load projection 
self self-discharge 
ss scenario 
t timeslot 
y representative year 

ransition progress. Nevertheless, current studies have not systemati-
ally evaluated the effects of ESS technology characteristics on RE inte-
ration in power systems [14] . They have also not adequately examined
ow the energy transition can be achieved with sufficient consideration
f those characteristics in different ESS technologies. 

Firstly, some existing studies underestimate the impacts of ESS and
ts technology on RE integration in power systems. For instance, the
panish regional RE sources are integrated into the national power grid
o achieve 49.7% reductions in greenhouse gas emissions [15] . Simi-
arly, Indonesia’s regional RE sources have been arranged to achieve
1% RE penetration in 2040 with the cost-minimized objective in the
ower system [16] . However, they do not consider ESS in their studies.
he fact is that ESSs cannot only enhance RE integration in a reliable
ay but also reduce the same amount of greenhouse gas emissions at
n even lower cost by utilizing their storage capacities in the power sys-
em. The absence of ESSs may also cause an overestimation of the RE
nstalled capacity needed to achieve a successful energy transition. Sec-
ndly, even though some RE integration and energy transition studies
onsider ESSs, they do not clarify the specific type of different ESS tech-
ologies. For example, although the ESSs are implemented to facilitate
E integration [17] , the generalized model does not specify the type of
SS technology used in the system. The ESS extensions are considered
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transition. 
n India’s national power grid planning to reduce CO 2 emissions by 85%
n 2040 without identifying the type of ESS technology [18] . Thirdly,
ome studies oversimplify the characteristic of various EES technolo-
ies, such as [19] , only considering simplified battery storage without
entioning the ESS technology characteristics in a big decarbonization
roject in China. However, due to the diversity of ESS technologies, the
bsence of explicit descriptions of their characteristics in the RE integra-
ion studies may lead to inaccurate results. Fourthly, some studies only
onsider the limited type and characteristics of ESS technologies for RE
ntegration. The benefits of long-term ESS are discussed to improve RE
ntegration in California [20] but the authors fail to compare the short-
erm and middle-term ESS benefits. Although pumped hydro storage
PHS) [21] and battery storage [22] have been considered to solve the
E integration in Europe and the U.S., however, the characteristics of
attery storage are not clearly explained. Thus, we can argue that other
SS technologies may potentially provide better RE integration strate-
ies due to their higher charging efficiency or lower capital cost. The
election among ESS technologies with distinct characteristics can im-
act power system operation with high RE integration, which further
ffects energy transition progress. There is still a noticeable knowledge
ap in systematically and comprehensively analyzing the impacts of ESS
echnology on RE integration and energy transition. 

Power system modeling is also critical when investigating the im-
acts of ESS on RE integration and energy transition. Some studies
23] only consider the system-level power balance constraints, where
ll the power system facilities, such as generators, ESSs, and demand
oads, are connected to a single bus in the power system without spatial
nformation [24] . A system-level or region-level power balance [25] can
educe the computation intensity and provide an energy generation ar-
angement with the power dispatch strategies to meet the increasing
oad and RE penetration toward carbon neutrality [26] . The potential
f advanced computing technologies in resolving computational difficul-
ies could be significant [27] . In addition, various studies have utilized
ystem-level energy balances to analyze the island and grid-connected
peration economic impacts of RE integration [28] , the benefits of nu-
lear flexibility on RE integration in a power system [29] , and the ESS
ole in the future power system [30] . However, geographic and topology
nformation is inaccessible in the above works. Without modeling the
ransmission lines and buses in a power system model, the required ca-
acities of generators and ESSs may be underestimated due to the insuf-
cient considerations of the transmission distances and power demand
istributions through the grid [31] . On the other hand, some studies
onsider a reduced power system model by incorporating limited ge-
graphical information [32] . For example, balancing India’s regional
emand response and RE sources in only a few selected energy sec-
or sites [33] , investigating whole Indonesia’s RE sustainability between
nly five archipelagic states [16] , and assessing the RE generation ben-
fits for decarbonization in ten inter-state in the U.S. [34] . However,
he topology information used in these studies may be oversimplified,
indering their results’ accuracy. Thus, power system modeling with
nough topology information [35] should be considered to explore the
tudy of the synergy between RE and ESS in the RE integration and en-
rgy transition problems. 

Other studies propose different ways for solving RE integration and
nergy transition problems, such as alternative selections [36] and port-
olio planning [37] of RE and ESS. These model frameworks are usu-
lly constructed with predefined candidates and portfolios to evaluate
he advantages and drawbacks of the ESS technologies and RE sources
ith multidimensional evaluations using the multiple-criteria decision-
aking (MCDM) model. The multidimensional evaluations cover ex-

ensive metrics for different tasks. For instance, life cycling assessment
LCA) is used to evaluate the sustainability of RE technologies [38] .
echnical [39] and economic metrics are used to evaluate RE and ESS
election [40] with Shannon entropy [41] and analytical hierarchy pro-
ess (AHP) [ 42 , 43 ]. Although these MCDM models provide a consistent
asis for ESS technology comparisons and optimize the selection from
3 
ultiple criteria [44] , the evaluations of ESS technologies in the above
orks may be biased because they do not involve power system model-

ng and apply the constraints of energy transition goals. Besides, these
orks incorporate many metrics that do not directly affect power sys-

em operation, such as social acceptance. Therefore, the highly priori-
ized ESS technologies in the previous MCDM studies may not always
ead to the optimal selection in the power system operation optimization
odel for RE integration. For example, studies indicate that LIB is the
rioritized ESS technology in the resident stationary grids [45] based on
heir inherent characteristics and consumer acceptance. However, due
o the significantly high unit capital cost compared to other ESS tech-
ologies [46] , LIB may not be favored in the power system operation
ptimization model. On the other hand, without the multidimensional
valuations from the MCDM model, the single-layer optimization can
nly provide the optimal solution from a single dimension, limiting the
election of ESS technology in the RE integration problem and hindering
he RE integration and energy transition development. 

To fulfill the aforementioned research gaps of existing studies, we
ropose an integrated OPF-MCDM (optimal power flow-multiple criteria
ecision-making) model, which includes two parts: the OPF part [47] de-
nes power flow transmission and bus-level power balance constraints
nd provides a system-level optimal solution; the MCDM part evaluates
SS technologies from multidimensional perspectives by importing the
PF results and the inherent characteristics of various ESS technologies,
hich can evaluate the performance of the selected ESS technologies

or RE integration and energy transition. In this study, we conduct a
ase study in New York State (NYS), which cover the stage-wise climate
oals as defined by Climate Leadership and Community Protection Act
CLCPA) [48] . Our comprehensive future scenario design with the NYS
ase study can help the proposed OPF-MCDM model to determine the
roper ESS technology for RE integration and energy transition over a
ong-time horizon. It is worth noting that the scope between this study
nd the previous study [49] is different, and the studies support the en-
rgy transition in NYS from different perspectives. The previous study
49] implemented robust optimization to evaluate the RE integration
rogress under uncertainty, which is an important issue in power gen-
ration systems [50] . They do not consider the power transmission net-
ork in the power system modeling and do not consider the expansion
f ESS technology in NYS. In this work, the aim is to evaluate the im-
act of ESS technology on the RE integration and energy transition in
YS with stage-wise energy transition and climate goals. We consider

he power transmission network in the power system modeling. The fu-
ure scenario design covers certain uncertainties, the stage-wise energy
ransition and climate goals, the ESS technology development impact on
ost reduction, the policy restriction of CO2 emissions, the different load
rojections, and the dispatchable RE concept. The results can give gen-
ral suggestions for the ESS technology selections based on their criteria
reference for future energy transition studies. 

The main contributions of this work are summarized as follows: 

• Six ESS technologies’ impacts on NYS power transmission system op-
eration with stage-wise RE integration and energy transition targets
are fully investigated. Based on the spatial and temporal analysis, the
most critical features of ESS technologies are identified to enhance
RE integration and achieve NYS’s climate goals. 

• The proposed future scenario design from 2025 to 2040 thoroughly
explores the ESS technology developments, power system evolu-
tions, climate goals, the drought impact, and the price changes of
generator dispatches, ESS technologies, and CO 2 emissions. 

• A novel integrated OPF-MCDM model is proposed to quantify the
performance of ESS-related OPF solutions under multidimensional
evaluations. The proposed OPF-MCDM model provides more flex-
ibility in selecting ESS technologies based on different technical,
economic, and operation preferences for RE integration and energy
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The remainder of the paper is constructed as follows: We illustrate
he problem statement of this study in Section 2 . In Section 3 , we demon-
trate the methodology of this study and the research framework ar-
angement, which includes the future scenario design, power transmis-
ion system modeling, the OPF model formulation, and the OPF-MCDM
valuation process. Section 4 describes and discusses the results of the
PF-MCDM model evaluation on the NYS power system and ESS tech-
ology selection impact by criteria. In Section 5 , we present the conclu-
ions of this study. 

. Problem statement 

In this work, we propose an integrated OPF-MCDM model with fu-
ure scenarios from 2025 to 2040 in the NYS power transmission sys-
em to quantify the impacts of ESS technologies with distinct technical
nd economic characteristics on RE integration and energy transition.
he future scenario design combines the load projection variances, the
tage-wise climate goals, the six selected ESS technologies with future
evelopments, and the CO 2 emission restrictions. The input data com-
rise the initial information about the capacities of generators, ESSs, and
oads, the targets of RE integration and energy transition, the economic
nd technical characteristics of ESS technologies, the corresponding eco-
omic data of generators and ESS technologies, and the economic data
f CO 2 emissions cost. The decision variables of the OPF model include
he installation and operations of the generators, ESS, and lines. The OPF
odel aims to minimize the annual power system cost and obtain the

ptimal RE integration and energy transition pathway. The OPF solution
s delivered to the MCDM model and evaluated together with the ESS
echnology’s inherent characteristics for the performance evaluation in
he pathway toward energy transition with a uniform scale and multi-
imensional preferences. The output of the OPF-MCDM model includes
he performance of different ESS technologies in different scenarios to
how the selection priority of ESS technologies for RE integration and
nergy transition. The overall framework of the OPF-MCDM model is
escribed in Section 3.3 . The compact OPF formulation and detailed
PF constraints can be found in Section 3.2 and Appendix B.1, B.2, B.3,
nd B.4, respectively. 

. Methodology 

.1. Systems modeling and optimization framework 

The overall framework of the proposed method is illustrated in Fig. 1 .
irst, we collect the ESS technology’s technical and economic charac-
eristics from the recent ESS reviews [51] of development [52] with life
ycle analysis [53–55] and ESS application reviews of versatile [46] ,
tility-scale [56] and grid-connected implementation [57] , to illustrate
he reasons for selecting the ESS technology and their future costs. The
nderlying considerations for selecting ESS technologies, technical and
conomic characteristics, and the future cost simulations of ESS are de-
cribed in Appendix A. Based on the literature review, we select six scal-
ble ESS technologies, including LIB, NASB, lead-acid battery (LAB),
ickel-cadmium battery (NICDB), vanadium redox flow battery (VRFB),
nd Zinc-bromine battery (ZNBRB). These six technologies can also be
lassified as the battery energy storage system (BESS), although we ac-
nowledge there are many other energy storage technologies and op-
ions [ 58 , 59 ] that are not considered in this study. Then, we construct
 power transmission system model in NYS, including the transmission
ines, generators, and loads based on the high-fidelity data collection
rom the New York Independent System Operator (NYISO)’s report [60] ,
ystem map [61] and power market data [62] . The future scenarios
f RE integration and energy transition in NYS are designed with the
tage-wise climate goals defined by the CLCPA [48] , the clean energy
tandards [63] , the future load projections [48] , and the selected BESS
echnologies. We also consider the future scenarios of the generators’
evelopment and ESSs’ impact [64] on capital, O&M cost, retirement,
4 
nd replacement cost, the restriction of CO 2 emission impact on the so-
ial cost [65] , and dispatchable RE concept fulfilled by the ESS [66] ,
ncertainty RE generation [67] , regional synergy [68] , algorithm [69] ,
nd smart grid control [70] . Lastly, an OPF problem is formulated and
olved by the Pyomo package with the Gurobi solver. The MCDM model
eceives the OPF solution and ESS inherent characteristics to generate
he performance scores of the BESS technologies by scenarios. Here, the
erformance score quantifies the selection priority of BESS technologies
nder technical, economic, and operational preferences. The higher per-
ormance score represents that this BESS technology outperforms the
thers. 

.2. Introduction of the future scenario design, New York State power 

ransmission system modeling, and optimal power flow formulation 

In response to the energy transition and climate goals within the
.S. and the signing of the CLCPA into law [48] , the NYS government
stablished stage-wise climate goals to facilitate RE integration and en-
rgy transition in NYS from 2025 to 2040. The milestones of RE inte-
ration and climate goal can be partitioned into four main stages: (1)
he installed capacity of distributed solar will reach 6000 MW by 2025.
2) The installed capacities of ESS and distributed solar capacity will
each 3000 MW and 10,000 MW by 2030, respectively. The overall RE
roduction, including distributed solar, onshore wind power, and off-
hore wind power, will account for 70% of the annual energy produc-
ion by 2030 [71] . (3) The installed capacity of offshore wind power
ill reach 9000 MW by 2035. (4) Energy production with zero CO 2 

missions will be reached by 2040 [48] . These four stage-wise climate
oals are represented by four representative years, 2025, 2030, 2035,
nd 2040 to perform the temporal analysis conducted in the future sce-
ario design. The current installed capacities of distributed solar energy,
nshore wind power, offshore wind power, and ESS are low, but they
ill have significant increment to support the energy transition in the

ollowing decades. It is worth noting that as per 2022 ′ s load and capac-
ty book [60] , distributed solar energy, onshore wind power, and off-
hore wind power have grid-connected capacities of 76.5 MW, 2191.5
W, and 0 MW, respectively. Onshore wind power is the renewable

nergy with more development in the NYS power system compared to
istributed solar and offshore wind power. The offshore wind power
lant is under construction and will be available in the following years.
his study only focuses on renewable solar and wind power and does
ot consider other promising RE technologies that have great promises
or power generation in NYS, such as geothermal [ 72 , 73 ]. In addition,
YS’s grid-connected ESS installed capacity is 638 MW in 2022, with
 high escalation rate in the following decades to support the energy
ransition toward zero carbon emissions in 2040. In addition, we also
onsider the developments of technology and energy policy in the future
cenario design, including the future capital, O&M, and retirement costs
f the generators and ESS technologies [64] , the load projections [48] ,
he restrictions of CO 2 emission [ 65 , 74 ], and the concept of dispatchable
E [ 66 , 68–70 , 75 ]. The objective of this comprehensive future scenario
esign is to cover the extensive future variances of the ESS technology
or RE integration and energy transition from 2025 to 2040 in the NYS
ower transmission systems. 

Based on the latest public access information, we establish a county-
evel NYS power transmission system model and adjust the inner bus
onnections following the topology information from the 2019 NYS
ower system map [61] . In addition, the generators’ location, capac-
ty, and carrier are collected from the 2022 Load & Capacity Data Gold
ook [60] . The 2019 hourly load data is extracted from NYISO’s energy
arket & operational data [62] and scaled based on the load projec-

ion ratio of each representative year. This NYS power transmission sys-
em model includes 121 buses, 698 generators, and 184 transmission
ines, as shown in Fig. 1 . The standard voltage levels of the transmission
ines include 115, 138, 230, 345, and 765 kV in the NYS power system
61] . Because of the lack of specifications for the low-voltage transmis-
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Fig. 1. The overall framework of this study includes three parts: the energy storage system, New York State power transmission system modeling, and the optimal 
power flow-multiple-criteria decision-making model. 
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ion lines on the map, the voltage level under 230 kV is assumed to be
38 kV. 

NYISO partitioned the NYS territory into 11 control zones, from A
o K [ 76 , 77 ], to maintain the complex power system market. In this
tudy, zones J and K are the heavily loaded zones due to their high
opulation near New York City (NYC). The other zones are regarded as
ightly loaded zones. We focus on analyzing the installation and opera-
ional performance of REs and ESSs between heavily loaded and lightly
oaded zones to understand the selection of ESSs to accelerate the RE
ntegration and energy transition in NYS. 

This study performs the optimization with objective and operational
onstraints in the OPF model. The transmission line’s reliable reactive
ower information is unavailable; thus, our OPF model concentrates on
 DCOPF model rather than an ACOPF model. Extension to an ACOPF
odel is possible if the reactive power information is available. The ob-

ective of this DCOPF model is to minimize the total power system cost
n a yearly basis, as described in Eq. (1) . The constraints of the genera-
ors, ESSs, network operations, and annual CO 2 and RE production can
e found by referring to Sections B.1, B.2, B.3, and B.4 in Appendix B,
espectively. 

in 𝑜𝑏𝑗 𝑠𝑠 = 𝐶 

𝐸𝑃 
𝑠𝑠 

+ 𝐶 

𝑂𝑃𝑅 
𝑠𝑠 

, ∀𝑠𝑠 ∈ 𝑆𝑆 (1)

.t. Generator constraints (B1)-(B7); 
Energy storage system constraints (B8)-(B15); 
Network operational constraints (B16)-(B20); 
Annual CO 2 and RE production constraints (B21)-(B22). 
The annual total power system cost in Eq. (1) includes the annual

et equipment cost 𝐶 

𝐸𝑃 
𝑠𝑠 

and the net operation cost 𝐶 

𝑂𝑃𝑅 
𝑠𝑠 

in each sce-
ario ss . The set SS can be represented as a combination of [ 𝐸, 𝑆, 𝑌 ] ,
5 
here 𝐸 represents the set of BESS technologies e, S denotes the set of
oad projections s , and Y represents the set of representative years 𝑦 with
ifferent climate goals in NYS. The annual net equipment cost 𝐶 

𝐸𝑃 and
peration cost 𝐶 

𝑂𝑃𝑅 can be obtained in Eqs. (2) and (3) , respectively. 

 

𝐸𝑃 
𝑠𝑠 

= 𝐶 

𝐺𝐶 
𝑠𝑠 

+ 𝐶 

𝐸𝐶 
𝑠𝑠 

+ 𝐶 

𝐺𝑅 
𝑠𝑠 

+ 𝐶 

𝐸𝑅 
𝑠𝑠 

+ 𝐶 

𝑙 
𝑠𝑠 
, ∀𝑠𝑠 ∈ 𝑆𝑆 (2)

here the annual net equipment cost 𝐶 

𝐸𝑃 includes the annual generator
apital cost 𝐶 

𝐺𝐶 , annual ESS capital cost 𝐶 

𝐸𝐶 , generator retirement cost
 

𝐺𝑅 , ESS replacement cost 𝐶 

𝐸𝑅 , and transmission line extension cost 𝐶 

𝑙 .

 

𝑂𝑃𝑅 
𝑠𝑠 

= 𝐶 

𝐺𝐹 
𝑠𝑠 

+ 𝐶 

𝐺𝑉 
𝑠𝑠 

+ 𝐶 

𝐸𝐹 
𝑠𝑠 

+ 𝐶 

𝐸𝑉 
𝑠𝑠 

, ∀𝑠𝑠 ∈ 𝑆𝑆 (3)

here the annual operation cost 𝐶 

𝑂𝑃𝑅 composites the annual generator
xed O&M cost 𝐶 

𝐺𝐹 , annual generator variable O&M cost 𝐶 

𝐺𝑉 , annual
SS fixed O&M cost 𝐶 

𝐸𝐹 , and annual ESS variable O&M cost 𝐶 

𝐸𝑉 . 

.3. Flowchart and evaluation criteria of the integrated optimal power flow

multi-criteria decision-making model 

After we solve the OPF problem, the optimal solution is delivered
o the MCDM model, following the steps and computational settings
n Fig. 2 . First, the selected BESS technology characteristics and loads
rom the selected projection of the initial representative year 2025 are
ntegrated into the OPF model to obtain the optimal solution of the gen-
rators’ dispatches, power flows and installation strategies of ESSs and
E sources. The performance of BESS technology from the OPF solution
nd the BESS technology’s inherent characteristics are delivered to the
DCM model to acquire the performance scores of the BESS technolo-

ies by scenario. Then, the installed capacities of ESSs and RE sources
re determined to update the following representative year’s initial RE
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Fig. 2. Flowchart of the proposed OPF-MCDM model. The OPF model generates the optimal power flow solution, and the MCDM model is responsible for calculating 
the performance scores of the selected BESS technologies. 

Fig. 3. The multidimensional criteria evaluation process consists of five layers. The inputs from the performance import layer are normalized in the sub-criteria 
layer and multiplied by the weights or ratios in each layer to ultimately obtain the ESS technology’s performance score. 
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nd ESS conditions. In the next representative year, the OPF model is
olved with the updated RE and ESS status to obtain the OPF solution
ith a new climate goal. This iterative process continues until all four

epresentative years of BESS technology e in load scenario s are covered.
After solving the OPF model, the selected BESS technology’s oper-

tional and installation performance will be delivered to the MCDM
odel for evaluation with multidimensional criteria. The evaluation cri-

eria and the hierarchical structure of the MCDM model are denoted in
6 
ig. 3 . The MCDM model comprises the performance import layer, sub-
riteria layer, criteria layer, elements layer, and output layer. Specifi-
ally, we review the previous MCDM studies on the ESS technologies
o support us in selecting the metrics. We aim to include more met-
ics related to the power system in the evaluation to make the process
ore comprehensive. Through the review, we discover some features,

uch as energy density, efficiency, cycling, and lifetime, that are crit-
cal for selecting ESS technology. Therefore, we select ten matrices in
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he sub-criteria under the preference of technical, economic, and oper-
tional criteria. It is worth noting that the metrics in the social aspects
re not considered because the value may have significant diversity and
s not directly related to the power system operation [78] . Chosen met-
ics can refer to Fig. 3 for more details. The metrics include (1) energy
ensity, the energy density of ESS technology; (2) efficiency, the aver-
ge of cycling and discharge efficiency; (3) specific energy, the specific
nergy of the ESS technology; (4) lifetime/cycling life, the length of
ime the ESS can be used and their cycling limits; (5) self-discharge, the
elf-discharge rate of the ESS technology; (6) specific power, the spe-
ific power of ESS technology; (7) capital cost, the annual total capital
ost of ESS; (8) O&M cost, the sum of annual ESS fixed and variable
&M cost; (9) CO 2 emissions, which are caused by generators during
peration; and (10) RE capital cost, the annual RE installation cost. The
ub-criteria (1)–(6) come from the inherent characteristics of ESS tech-
ologies, and sub-criteria (7)–(10) come from the optimal power flow.
he metrics are determined by following the investigation of the most
rucial metrics obtained from the previous study [79] . In addition, we
nclude the metrics of power system operation and RE integration [41] ,
uch as RE capital cost and CO 2 emissions, which are impacted by the
ifferent BESS technologies in our study. For calculation, the sub-criteria
erformance values are first normalized to a uniform scale to reduce the
alculation variance and then multiplied by the weights adopted from
revious MCDM studies [ 41 , 79 ], as shown in Table 3 . The sum prod-
cts of weights and the sub-criteria value are aggregated to the techni-
al, economic, and operational performance values in the criteria layer.
he values in the criteria layer of each representative year are averaged
o reduce the complexity of the multidimensional evaluation. Further-
ore, to evaluate the impact of weight change on the criteria, we im-
lement the cross-sensitivity analysis on the weights of the technical,
conomic, and operational criteria. Namely, two ratios are considered
or the cross-sensitivity analysis: the technical-economic ratio between
he technical and economic criteria; and the Power System (PS)-ESS ra-
io between the ESS and the operational performance in the elements
ayer. 

. Results and discussions of the New York State case study 

This section gives the ESS performance, RE integration, and energy
ransition results in the NYS case study to demonstrate the correctness
f the proposed OPF-MCDM model for analyzing the BESS technology
mpact on the RE integration and energy transition. This case study con-
ucts a comprehensive scenario analysis of six selected BESS technolo-
ies, four representative years with climate goals from the CLCPA [48] ,
nd three load projections from the NYISO report [48] . The spatial dis-
ribution of load is collected from historical data [62] in the pre-Covid-
9-pandemic year 2019, considering the load may be untypical in the
ovide-19 pandemic year. If we consider the load condition in 2019 as
 reference basis, the high load projections for 2025, 2030, 2035, and
040 are 101%, 106%, 122%, and 139% of the reference basis, respec-
ively. The medium load projections for 2025, 2030, 2035, and 2040 are
6%, 96%, 107%, and 118% of the reference basis, respectively. The low
oad projections for 2025, 2030, 2035, and 2040 are 93%, 90%, 95%,
nd 102% of the reference basis, respectively. The four representative
ears with the corresponding stage-wise climate goals are presented in
able 1 , and the projection ratios with corresponding loading conditions
re described in Table 2 . The scenarios combine six BESS technologies,
hree load projections, and four representative years to sum up 72 sce-
arios. 

The OPF model is built by the PyPSA package [80] . The hourly loads
re scaled based on the load increments between the representative
ears. The interface transmission data is collected from the NYISO en-
rgy market & operational data [62] . There are 11 types of generator
arriers considered in this case study of NYS power systems, including
iogas, distributed solar, fuel oil, hydropower, natural gas combined cy-
le (NGCC), nature gas combustion turbine (NGCT), nature gas steam
7 
urbine (NGST), nuclear power, onshore wind power, offshore wind
ower, and solid waste. The grid-connected behind-the-meter (BTM)
ata is collected from the NYISO load & capacity gold book [60] . In
he energy carriers, only distributed solar, onshore wind, and offshore
ind power are extendable to achieve the energy transition. We also
otice that drought has happened more frequently in recent years and
an potentially impact future hydrogen power generation. Therefore,
e assume hydrogen power generation reduce by 30% in all the sce-
arios to simulate future drought impact. In addition, the generator ca-
acity extension data is adopted from the CARIS report [ 81 , 82 ]. We
ollect the generation’s future capital, operational, and retirement cost
ata by carriers. The line characteristics of the transmission lines follow
he PyPSA package standard [83] . We assume the initial capacities of
he transmission lines follow the surge impedance loading [84] and the
eak demand by zone [60] , with fourth times the extension threshold
o cover the increasing load and RE penetration across NYS. In terms
f ESS capacity, 50% of the capacity extension threshold is considered
rom 2025 to 2035. Moreover, considering the drought impact on hy-
rogen power generation, the strict zero carbon dioxide emissions goals,
nd the high demand loads, 270% capacity extension thresholds are
pplied to the ESS as the constraint to restrict the ESS capacity ex-
ension within a reasonable range. We also assume that ESSs shall be
nstalled near the top three densely populated locations in each zone
o respond rapidly to the high demand loads. However, the candidate
ocations for ESS installation are distributed across NYS, making the
ocational environments vary significantly by weather conditions and
ncreasing the complexity of the optimization problem. Thus, we follow
he degradation evaluation of ESS from previous studies [ 85 , 86 ] for sim-
lification. Similarly, the transformer capacity is not considered in this
tudy. 

To validate the OPF model, we compare our results with the expected
nergy capacity extension [87] from NYISO published report. This re-
ort shows that NYS’s total installed capacity of generators is projected
o be approximately 50, 65, 81, and 112 GW in 2025, 2030, 2035, and
040, respectively. In our simulation results, the average installed ca-
acities of generators are 50.2, 69.8, 79.1, and 115.5 GW between dif-
erent BESS technologies. The annual estimated installed capacities of
enerators are similar to the NYISO’s predictions. 

In the MCDM model, we adopt the sub-criteria weights from the pre-
ious MCDM studies, as shown in Table 3 . Those weights are normal-
zed, and the summation of weights equals to 1.0 in each criteria. In
ddition, the cross-sensitivity analysis between the criteria layer, ele-
ent layer, and objective layer with the technical-economic ratio and
S-ESS ratio have values ranging from 0.1 to 0.9, which can help us to
nderstand how ESS technology selection priority varies with the dif-
erent combinations of criteria preferences. 

Section 4.1 presents ESS and RE’s installed capacities and the re-
ional distribution of generator installed capacity between BESS tech-
ologies. The observation from these comparisons brings out the discus-
ion of which BESS technology required less installed capacities of ESS
nd RE to achieve the same climate goals and what is RE installed ca-
acity location preference for ESS. The discussion can help us realize the
ynergy between ESS and RE to enhance the RE integration and energy
ransition. Section 4.2 presents the operational result of different BESS
echnologies under different scenarios. The observation that the BESS
echnology performs differently on cycling numbers, CO2 emissions,
nd the total system cost render the systematic perspectives of what
ind of BESS technology may have better operational performance un-
er different scenarios with various climate goals. Section 4.3 presents
he multidimensional evaluation results of BESS technologies from the
PF-MCDM model. The observation of how the performance score of
ESS technologies varies under different combinations of criteria pref-
rences and scenarios is presented in this section. This observation is
iscussed by scenarios, BESS technologies, and different criteria prefer-
nces, and gives the general suggestion of the BESS technology for RE
ntegration and energy transition problem. 

Qianzhi Zhang
Highlight
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Table 1 

RE integration and climate goals in four representative years, 2025, 2030, 2035, and 
2040. 

Representative Years RE integration and climate goals 

2025 The installed capacity of distributed solar reaches 6000 MW. 

2030 (1) The installed capacity of ESS reaches 3000 MW. 
(2) The installed capacity of distributed solar reaches 10,000 

MW. 
(3) RE energy production, including distributed solar, onshore 

wind power, and offshore wind power, accounts for 70% 

of the annual energy production. 

2035 (1) The installed capacity of offshore wind power reaches 
9000 MW. 

(2) CO 2 emissions are assumed to be at most half the level in 
2030 to achieve zero CO 2 emissions in 2040. 

2040 The goal of energy production with zero CO 2 emissions is 
achieved in this representative year. 

Table 2 

Three load scenarios, high, medium, and low, in 
each representative year and their corresponding ra- 
tios compared to the 2019 reference load level [48] . 

Load Scenario 2025 2030 2035 2040 

High 101% 106% 122% 139% 

Medium 96% 96% 107% 118% 

Low 93% 90% 

∗ 95% 102% 

∗ Low load scenario in 2030 assumes high adop- 
tion of energy efficiency measures and behind-the- 
meter solar energy, which decreases the demand 
loads. 

Table 3 

The selected metrics in the sub-criteria layer are related to the BESS tech- 
nologies and the power system operation performance. The weights of the 
metrics in the sub-criteria layer are adopted from the RE [41] and ESS 
[79] selection studies and normalized for calculation purposes. 

Elements Criteria Sub-Criteria (metrics) Weights 

Energy Storage System Technical Energy Density 0.2426 
Efficiency 0.1270 
Specific Energy 0.1905 
Lifetime/Cycling Life 0.1202 
Self-discharge 0.1293 
Specific Power 0.1904 

Economic ESS Capital Cost 0.5294 
ESS O&M Cost 0.4706 

Power System Operational CO 2 Emissions 0.7547 
RE Capital Cost 0.2453 
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.1. Spatial and temporal analysis of energy storage system technology 

election and renewable energy installation 

We first notice ESS’s installed capacities and operational differences
mong BESS technologies when analyzing the results from the OPF-
CDM model. In order to show the most paradigmatic differences be-

ween BESS technologies, we select the four most representative BESS
echnologies in the high projection out of the total 72 scenarios for vi-
ualization in Figs. 4 and 5 : (1) LIB, the most commonly used BESS
echnology; (2) LAB, a BESS technology in conservative innovation sce-
ario; (3) VRFB, a BESS technology in the advanced innovation sce-
ario; (4) NASB, the technology in the moderate innovation scenario.
ig. 4 illustrates the zonal installed capacities and the cycling numbers
f those four selected BESS technologies with high load projections in
025, 2030, 2035, and 2040. A, B, C, and so on in the x -axis in Fig. 4 rep-
esents the control zones in NYS. 
8 
In Fig. 4 , the lines represent the ESS’s installed capacity in MW in
ifferent zones, and the bars represent the cycling numbers of ESS in
ifferent zones. Note that the cycling numbers of ESS will be discussed
n Section 4.2 with the analysis of total system costs and CO 2 emissions.
rom the observation of Fig. 4 , we discover that the installed capacity of
ach BESS technology increases significantly as the RE penetration in-
reases, from an average installed capacity of 1.85 GW in 2025 to 25.3
W in 2040 among all BESS technologies. The installed capacities of

he four BESS technologies are close to the baseline extension (0%) in
025, while the installed capacities of the four BESS technologies are
lose to the extension limit (270%) in 2040, as shown in Fig. 4 (a) and
d), respectively. The main reason for this tendency is that there are
elatively low loads and low RE penetration with the high capital cost
f BESS technologies in 2025. In contrast, the loads and RE penetra-
ion are high, with relatively low ESS capital of BESS technologies in
040. The trend of ESS installed capacity preference from the baseline
0%) in 2025 to the extension limit (270%) in 2040 indicates that more
SS installed capacity benefits the RE integration in the power system,
specially when in the high RE penetration condition. 

Moreover, we discover that the ESS installed capacity differs greatly
rom BESS technologies. As shown in Fig. 4 (a)-(d), LIB has the ESS in-
talled capacities of 1.85 GW, 6.94 GW, 6.97 GW, and 25.86 GW in 2025,
030, 2035, and 2040, respectively. The lowest ESS installed capacity
or LIB among BESS technologies is due to its high cycling efficiency,
ow self-discharge ratio, and high capital cost. LAB has a worse cycling
fficiency than LIB, with a value of 76.5%, a low capital cost, low max-
mum depth of discharge (DOD), and low discharge time among BESS
echnologies. Thus, LAB has much more ESS installed capacities than
IB, with capacities of 1.85 GW, 7.88 GW, 11.61 GW, and 25.86 GW in
025, 2030, 2035, and 2040, respectively. Fig. 4 (c) shows that VRFB has
 high ESS installed capacity of approximately 11.61 GW because of its
ower efficiency and lower capital cost than LIB. NASB presents a simi-
ar pattern to LIB, with a capacity of 6.53 GW due to the high efficiency
nd the high capital cost, as shown in Fig. 4 (c). As shown in Fig. 4 (b)-
d), LAB, with the lowest efficiency, lowest maximum DOD, and lower
ischarge time, has additional 940, 4640, and 7.2 MW ESS installed ca-
acities than LIB in 2030, 2035, and 2040, respectively. From the above
bservation, we can conclude that the BESS technologies, with no mat-
er lower charge-discharge efficiencies, lower maximum DOD, or lower
ischarge time, require an additional installed capacity of ESS to achieve
he same climate goals compared to other BESS technologies. Further-
ore, these ESS installed capacity differences between BESS technolo-

ies are significant, especially with the high RE penetration. 
When we break down the zonal level observation in Fig. 4 , it can be

ound that ESS installed capacity is also different between control zones.
s shown in Fig. 4 (a)-(d), lightly loaded zones A, B, D, and E have ESS

nstalled capacities typically close to the extension limit. In contrast,
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Fig. 4. The zonal installed capacities (lines) and total cycling numbers (bars) of BESS technologies with high load projections in the four representative years: (a) 
2025, (b) 2030, (c) 2035, and (d) 2040. 
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eavily loaded zones J and K mostly have ESS installed capacities that
o not reach the extension limit. The ESS installed capacities close to the
xtension limit represent the ESSs in the lightly loaded areas are crucial
nd cannot be ignored. The main reason for causing the preference is the
ynergy between ESS and RE in the unbalanced load distribution region.
oads in the NYS power system are highly unbalanced distributed. The
otal load in the areas of Bronx, NYC, Kings, Queens, Richmond, Nassau,
nd Suffolk, the seven counties in zones J and K out of 62 counties in
YS, accounts for 57.4% of the total load in NYS. Since the demand loads

n the lightly loaded areas are low, the distributed ESS can store the
dditional RE production in diversified locations. Besides, the high ESS
nstalled capacity for these distributed ESSs can significantly enhance
he reliability of the power system operation due to their high volume
o conduct energy redistribution and avoid transmission congestion. In
ontrast, RE production is usually used to supply the high local demand
oads in the heavily loaded areas, which can reduce reliance on the ESSs.
herefore, there is less ESS installed capacity preference in the heavily

oaded area. A similar tendency can be observed in the latter discussion
f the zonal RE installed capacity differences. 

The installed capacities of the generators with four representative
ESS technologies and high load projections in 2025, 2030, 2035, and
040 are presented in Fig. 5 . Those generators have 11 different energy
arriers with the two additional energy sources, the imported energy,
nd the BTM energy generation, as mentioned in Section 4 . From the
bservations in Fig. 5 , we can find out that four selected BESS technolo-
ies give similar results of RE installed capacities, approximately 17.2
nd 39.4 GW, in 2025 and 2030, respectively, as shown in Fig. 5 (a) and
b). However, some BESS technologies have more RE installed capacity
han others in 2040. In Fig. 5 (d), LAB requires additional 38.66 GW,
4.94 GW, and 46.74 GW RE installed capacities than LIB, NASB, and
9 
RFB in 2040, respectively. The crucial factor causing this difference is
he efficiencies, maximum DOD, discharge time, and capital cost of ESS
n each BESS technology. Among all six BESS technologies, LAB has the
owest maximum DOD, with a 60–70% value and a discharge time of up
o 5 h. In addition, the LAB has the higher energy loss in the charging
rocess within the four representative BESS technologies, directly in-
reasing the required RE installed capacities for load balancing. Besides,
rom the observation, we can conclude that the variance of RE installed
apacity by BESS technologies is conspicuous in high RE penetration but
s minor in low RE penetration conditions. Though the high energy loss,
ow maximum DOD, and discharge time in BESS technologies cause the
igher RE installed capacities and seems to foster the RE integration
o a certain extent with higher RE installed capacities, those additional
E installed capacities actually result in enormous costs under the same
limate goals. Therefore, since the objective of the OPF model is min-
mizing the total system cost in this study, the BESS technologies with
ess RE installed capacities are regarded as having better performance
han the BESS technologies with higher RE installed capacities. 

To further discuss the synergy between ESS and RE, the regional dis-
ributions of the generator’s installed capacities are shown in Figs. 6 and
 . The tendency of the zonal RE installed capacities is similar among the
ESS technologies. Therefore, we select the most popular BESS tech-
ology, LIB, as a demonstration to illustrate the spatial and temporal
nalysis of RE integration. The regional distributions of LIBs’ generator
nstalled capacities in 2025, 2030, 2035, and 2040 with different sce-
ario settings are presented in Figs. 6 and 7 . As shown in Fig. 6 (a)-(d),
7.2, 39.8, 52.8, and 84.8 GW of RE sources are installed across NYS in
025, 2030, 2035, and 2040 with high load projections, respectively. In
etween, zone A has a high RE installed capacity because it can provide
he high local demand loads in zone A and its adjacent zones B and C.
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Fig. 5. The installed capacities of the four representative BESS technologies with high load projections in four representative years: (a) 2025, (b) 2030, (c) 2035, 
and (d) 2040. 
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imilarly, Zones F and G also have a high priority for RE installation
ecause they are located near the heavily loaded center NYC. The trend
f the preferred installation location for RE shows that the OPF model
alances the energy production and loads within the minimum trans-
ission distances. In addition, this trend of location preference for RE is

lso affected by the locations of the fossil-based generators, which are
ainly near heavily loaded zones. The RE replaces the production of

onventional generators because of the high RE penetration and energy
ransition requirements, causing the preferred installation location for
E to be closer to the heavily loaded zones. 

To show the impact of load projection decrease on the RE installed
apacity location preference, we select the high, medium, and low load
rojections with LIBs in the zero CO 2 emissions target in 2040 as the
emonstration. The regional distributions of LIBs’ generator installed ca-
acities in 2040 with high, medium, and low load projections are shown
n Fig. 6 (d), Fig. 7 (a), and (b), respectively. Zones B, C, J, and K are the
ones that have significant reductions of RE installed capacities when
he load projections decrease from high to low. The geographical se-
ection priorities of RE installed capacities for zones B and C between
10 
hese zones are due to the unbalanced load distributions in NYS. NYC
nd its adjacent zones have the dominant demand loads. When the load
ecreases, zones B and C, which are far from NYC, have less installed
apacity priority for RE, while the RE prefers to be installed near the
eavily loaded zones. The reductions of RE installed capacity in zones
 and K are mainly caused by the reduction of offshore wind power. In
ddition, it is worth noting that zone A, which is the farthest zone from
YC, supplies power to adjacent zones B and C. Therefore, the RE in-

talled capacity in zone A decreases less than those in zones B and C, as
hown in Fig. 7 (a) and (b). From the discussion of Figs. 6 and 7 , we can
onclude that installing RE close to these heavily loaded zones makes
he RE energy production possible to respond rapidly to the substan-
ial demand loads. Moreover, ESS and RE’s systematic and spatial syn-
rgies can significantly enhance the power system’s reliability when re-
ponding to increasing loads and RE penetration. Considering that many
orldwide power systems have unbalanced load distributions, our find-

ng of the preferred installation locations for RE and ESS and their syn-
rgy for power system reliability enhancement shall also be applicable to
ther regional power systems. Future energy transition studies can ana-
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Fig. 6. The regional distributions of LIBs’ generator installed capacity in the high load projection in the four representative years: (a) 2025, (b) 2030, (c) 2035, and 
(d) 2040. 

Fig. 7. The regional distributions of LIBs’ generator installed capacity in 2040 with different load projections: (a) medium and (b) low. 

11 
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yze the synergy between having more RE installations near the heavily
oaded areas and the additional grid-connected ESSs in the remote and
ightly loaded areas to develop better systematic power system planning
trategies and explore the potential improvement for the RE integration
roblem. 

.2. The impact of energy storage system technology on the power 

ransmission system operation and carbon dioxide emissions 

The bars in Fig. 4 give the zonal and total cycling numbers of dif-
erent BESS technologies in the four representative years, 2025, 2030,
035, and 2040. The increment of cycling numbers for BESS technolo-
ies is mainly caused by the increase of RE penetration in each repre-
entative year. The ESSs need a high cycling number to store the energy
requently from RE sources and dispatch the power frequently to meet
he RE penetration increases, as shown in Fig. 4 (a)-(d). The average
ycling numbers of the four BESS technologies are approximately 500
imes in 2025, 1100 times in 2030, 1300 times in 2035, and 1000 times
n 2040. In addition, we can observe that zones B and C typically have
reater cycling numbers due to their lightly loading conditions. Those
ones are located far away from the load center of NYS and have the
ispatch flexibility of transferring power from lightly loaded zones to
eavily loaded zones [88] . In contrast, the heavily loaded zones, J and
, typically have slightly fewer cycling numbers because the power may
e used locally to balance the high demand loads in NYC before being
ransmitted to the other zones. 

In addition, we find a positive relationship between installed capac-
ty and the cycling numbers of ESS. LIB typically has a low ESS installed
apacity, resulting in lower cycling numbers in 2030 and 2035, as shown
n Fig. 4 (b) and (c). In contrast, LAB has large cycling numbers, approxi-
ately 1340 and 914 times in 2030 and 2040, respectively. In addition,

mong all BESS technologies, VRFB has the highest cycling numbers of
16, 1359, 1570, and 1151 in 2025, 2030, 2035, and 2040, respectively.
t is because that VRFB has the highest discharge time, up to 12 h, al-
owing the ESS to operate at the rated power for a longer time compared
o other BESS technology, such as LIB, with about up to 8 h of discharge
ime. 

Moreover, Fig. 8 shows the ten cost terms in Eq. (1) with six BESS
echnologies and high load projections in 2025,2030, 2035, and 2040.
he ten cost terms include the generator’s capital, O&M, and retirement
ost, ESS capital, O&M, replacement cost, line extension cost, and the
O 2 emissions social cost. It can be observed from Fig. 8 (a)-(c) that the
otal generator capital costs of all the BESS technologies increase gradu-
lly by year from approximately $30 billion to $110 billion to satisfy the
limate goals from 2025 to 2040. Besides, the total ESS capital costs in-
rease significantly from 2025 to 2040 because more ESSs are installed
o support high RE integration and achieve strict climate goals in op-
imized conditions. For instance, LIB has $2.6, $5.1, $6.4, and $22.4
illion of the ESS total capital costs in 2025, 2030, 2035, and 2040,
espectively. 

The results in Fig. 8 show that the highest social cost of CO 2 emis-
ions occurs in 2025. The total CO 2 emissions social cost gradually de-
rease along the representative years 2025 to 2035 in Fig. 8 (a)-(c) until
t reaches zero CO 2 emissions in 2040. The significant reduction of CO 2 
missions social cost is caused by a 52% of CO 2 emissions decline be-
ween 2025 and 2030 and a 50% of CO 2 emissions decline between
030 and 2035. When reviewing the crucial cost for the total system
ost, we discover that the total ESS capital cost is the most critical
ost among the BESS technologies between 2025 and 2040, as shown
n Fig. 8 (a)-(d). BESS technologies with a worse efficiency, a higher
nergy loss, low maximum DOD, or low discharge time, require addi-
ional RE and ESS installed capacities, which leads to higher total RE
nd ESS capital costs. For instance, NICDB, with the highest energy
oss in the charging process, has an additional $2.08 billion total sys-
em cost compared to LAB, the BESS technology having the lowest sys-
em cost in 2025, as shown in Fig. 8 (a). Besides, as shown in Fig. 8 (d),
12 
he differences in total system cost by BESS technologies are significant
n 2040, ranging from $118 billion to $173 billion, with a $55 billion
ost difference. These results illustrate that careful BESS technology se-
ection is essential for cost-saving in power system planning with RE
ntegration. 

Also, BESS technologies with a shorter lifetime or a lower cycling
imit require more frequent replacement. For instance, we observe that
NBRB, NICDB, and LAB need to be replaced in 2030 due to reach-
ng their short cycling limits of 2000, 3500, and 1800 cycles, which
urther leads to an increase in the capital cost, as shown in Fig. 8 (b).
oreover, the zero CO 2 emissions target in 2040 will push more fre-

uent ESS dispatches. Thus, due to cycling limits, LIB, NASB, NICDB,
RFB, ZNBRB, and LAB all need to be replaced in 2040. These replace-
ents cause huge economic disadvantages for these BESS technologies.

or instance, because NICDB requires replacements in 2030, NICDB re-
uires an additional $3.47 billion cost compared to the LIB in 2030. LIB
equires replacement in 2035 and 2040, causing additional $15.3 and
54.5 billion costs compared to the VRFB. Therefore, we can conclude
hat BESS technologies with a low lifetime and a low cycling limit re-
uire more frequent replacement than other BESS technologies, leading
o disadvantages for economic performance. Besides, the inevitable dis-
dvantage of the technical performance for high energy loss ESS tech-
ologies directly affects the reliability of power system operation and
esults in higher system costs. These economic drawbacks become more
ignificant when considering the longer analyzed horizon or reaching
he zero CO 2 emissions target. 

CO 2 emissions are important metrics to evaluate the energy tran-
ition progress. Therefore, we specifically discuss the CO 2 emissions
f each BESS technology in each representative year. The operational
O 2 emissions of the generators with the six BESS technologies in 2025,
030, and 2035 are presented in Fig. 9 (a)-(c), respectively. The result of
O 2 emission in 2040 is not shown in Fig. 9 because the zero CO 2 emis-
ions target will be achieved in 2040. As shown in Fig. 9 (a)-(c), the six
ESS technologies with high load projections have an average of 10.89,
.23, and 2.61 million tons of CO 2 emissions in 2025, 2030, and 2035,
espectively. In Fig. 9 (b), the NICDB has 5.36, 4.17, and 3.70 million
ons of CO 2 emissions in 2030 with high, medium, and low load projec-
ions, respectively. Those CO 2 emissions differences are caused by the
ifferent load projections, which can be referred to Table 2 . Moreover,
e find that the BESS technologies with a high energy loss rely more on

ossil-based generators. For instance, as shown in Fig. 9 (b), NICDB will
ause higher CO 2 emissions in 2030, with values of 5.36, 4.17, and 3.70
illion tons, than other BESS technologies. In contrast, VRFB, which
ave higher maximum DOD and discharge time, normally rely less on
ossil-based generators and thus generate fewer CO 2 emissions of 5.05,
.98, and 3.52 million tons in high, medium, and low load projection
n 2030, respectively, as shown in Fig. 9 (b). Similar tendencies of CO 2 
mission for LIB, NASB, and LAB can also be found in 2035, with val-
es of 2.51, 2.54, and 2.68 million tons of CO 2 emissions, as shown in
ig. 9 (c). From the discussion of the CO 2 emissions differences among
ESS technologies, we realize that the low maximum DOD and discharge
ime, and the unreliable power supply from the high energy loss BESS
echnologies cause additional CO 2 emissions. Because a huge amount
f energy is wasted during the charging, discharging, and storing pro-
ess, high energy loss BESS technologies require additional fossil-based
enerators’ support to maintain reliable power supplies and balance the
emand loads in the years before reaching the zero CO 2 emissions tar-
et. Thus, we can conclude that the BESS technologies with high energy
osses, low maximum DOD, or low discharge time are less conducive to
acilitating the energy transition than other BESS technologies due to
heir higher reliance on fossil-based generators. 

Because the BESS technologies in our study perform differently for
he installed capacities of RE, ESS, reliance on fossil-based generators,
nd the total system cost, the technical and economic characteristics of
ifferent ESS technologies should be fully clarified to prevent inaccurate
SS energy dispatch estimation and not hinder the evaluation of the



W.-C. Huang, Q. Zhang and F. You Advances in Applied Energy 9 (2023) 100126 

Fig. 8. The total system costs by ten cost categories for six BESS technologies in the high load projections in the four representative years: (a) 2025, (b) 2030, (c) 
2035, and (d) 2040. 
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ynergy between RE and ESS in the future power system and energy
ransition studies. 

.3. Multidimensional evaluation of the performance of energy storage 

ystem technology by scenario 

Fig. 10 shows the cross-sensitivity analysis of the technical-economic
atios and PS-ESS ratios of six BESS technologies in the four representa-
ive years, 2025, 2030, and 2035. The y- axis is the PS-ESS ratio, which
epresents the percentage of focus on the power system operational per-
ormance or ESS performance. The x -axis is the technical-economic ra-
io, which represents the percentage of focus on technical or economic
erformance. The performance score can be significantly different when
onsidering different criteria preferences. For example, in 2040, ZN-
RB has a 0.59 performance score in a 10% technical-economic ratio
nd a 90% PS-ESS ratio but only has a 0.24 performance score in a
0% technical-economic ratio and a 10% PS-ESS ratio. The performance
cores of the BESS technologies are highly dependent upon the prefer-
nces for the technical, economic, and operational criteria. 

When considering the discrepancies from the BESS technology per-
pective, NICDB has a worse performance than any of the BESS tech-
13 
ologies in some representative years, which results in a range of per-
ormance scores from 0.1 to 0.3 in all the combinations of technical-
conomic and PS-ESS ratios. The main reason is that NICDB has the
orst charge-discharge efficiencies with the highest O&M cost among all

he BESS technologies. Besides, NICDB requires reinstallation, bringing
he additional capital and replacement costs with economic disadvan-
age. Other BESS technologies, such as LIB, NASB, LAB, and ZNBRB, that
equire reinstallation between 2025 and 2035 usually have substantial
conomic disadvantages. However, LAB has a more negligible impact
ecause its capital cost is lower than those of the other BESS technolo-
ies, with values of $450 per kW. Moreover, some BESS technologies
ill perform better in 2040. For instance, LAB has high performance

cores only when having more preference for economic criteria. VRFB
as a high score ranging mostly from 0.60 to 0.72 due to its low capital
ost, high cycling limits, and longest discharge time compared to other
ESS technologies. 

Moreover, some BESS technologies perform better in specific rep-
esentative years or criteria preferences. For instance, NASB and VRFB
ave stable technical, economic, and operational performances, with
igh performance scores of approximately 0.79 and 0.65 in 2025, re-
pectively. However, some BESS technologies have worse performance
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Fig. 9. The CO 2 emissions in power system operation with six BESS technologies in the high, medium, and low load projections in three representative years: (a) 
2025, (b) 2030, and (c) 2035. 
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tarting from specific years than others. For instance, the BESS technolo-
ies with either a high capital cost or a high replacement cost, such as
IB and NASB, with the original average capital costs of $2600 per kW
nd $2000 per kW, have difficulty compensating for the economic draw-
acks. Even though LIB has the highest specific power, specific energy,
nd energy density, the higher technical performance cannot greatly
itigate the economic disadvantage. Thus, LIB usually has performance

cores mostly between 0.35 and 0.5 when economic criteria are pre-
erred. 

We also review the performance scores of six BESS technologies in
040, the target year of reaching zero carbon emissions. The ranking of
he BESS technologies follows the sequence of VRFB, LAB, NASB, LIB,
NBRB, and NICDB with average performance scores of 0.546, 0.514,
.491, 0.487, 0.485, 0.387 in all combinations of ratios, respectively.
RFB obtains the highest performance score because of its high cycling

imit, low capital cost, high maximum DOD, and high discharge time
ompared to other BESS technologies. In contrast, NICDB obtains the
14 
owest performance score because of worse operational performance
nd high energy loss. However, The BESS technology selection should be
exible and can be determined by the preference of the criteria or sce-
arios considering the different BESS technologies perform differently
y criteria. When having greater consideration of the technical criteria,
IB and NASB are better choices than the others because of their com-
ined performances based on their specific power, energy density, and
fficiencies. With greater consideration of the economic criteria, LAB
nd VRFB are the BESS technologies with outstanding performance due
o the low capital costs. Moreover, when having greater consideration of
he operational criteria, NASB and VRFB are the better options among
ll of the ESS technologies since they have better synergies with the
ower system by having high cycling and discharge efficiency with low
nergy loss. 

Compared to our results of the BESS technology selection presented
n Section 4.3 , many previous MCDM studies [44] have mentioned that
IB has the highest selection priority for power systems or grid-related
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Fig. 10. The performance scores of the six BESS technologies in the four representative years are based on the cross-sensitively analysis of the technical-economic 
and PS-ESS ratios. 
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pplications. The main reason is that they usually consider the social
riteria impact, such as social acceptance [89] . The market and con-
umer generally have a high confidence score for LIB, leading to high
erformance on social criteria. In addition, if an evaluation does not in-
lude the power system’s operational performance and RE integration
arget, it will not cover the reinstallation costs. Considering that the
ifetime of the common LIBs is ten years, and the cycling limit is 2250
imes, it has a great chance to be reinstalled in the power system fre-
uently when in high RE penetration conditions that requires frequent
ispatches from the ESS to mitigate intermittent power supplies from
E. Therefore, LIB’s overall performance may not be as optimistic as

hat determined by the evaluations based only on its inherent charac-
eristics without the power system operation involved. In contrast, VRFB
eceived an average performance rating in the previous MCDM studies
ecause it is still under development. However, VRFB has expected more
echnical improvement in the next decades. Although VRFB’s inherent
conomic and technical performances are not the best, high maximum
OD, long discharge time, and high cycling limit give it certain advan-

ages, especially when the analyzing horizon of RE integration is long.
e can expect a more mature grid-scale application for VRFB in the near

uture ( Fig. 10 ). 

. Conclusions 

In this study, an integrated optimal power flow-multiple-criteria
ecision-making model with extensive future scenarios was proposed
o investigate six battery energy storage system technologies’ impact on
he power transmission system operation with renewable energy inte-
ration to satisfy the New York State stage-wise climate goals from 2025
o 2040. The extensive future scenario design considered the future de-
15 
elopments of battery energy storage system technologies and gener-
tors, policy restriction of carbon dioxide emissions, load projections,
nd climate goals. The proposed method could identify the most critical
eatures of battery energy storage system technologies to enhance re-
ewable energy integration and achieve New York State’s climate goals.

Based on the spatial and temporal analysis, we concluded that the
referred installed locations of the energy storage system and renewable
nergy were highly correlated with the load distributions. The synergy
etween the energy storage system and renewable energy was crucial to
nhance the reliability of power system operation, especially when the
ero carbon dioxide emission target is achieved in 2040. The synergy be-
ween the energy storage system and renewable energy could also help
uture renewable energy integration studies analyze the benefits of inte-
rating renewable energy in power systems with energy storage systems.
hen comparing the performance of different battery energy storage

ystem technologies, we discovered that technologies with high energy
oss, low maximum depth of discharge, and low discharge time could re-
uce the reliability of power system operation. They required additional
ower supplies than other battery energy storage system technologies to
atisfy climate goals. For example, the lead-acid battery, with the high
nergy loss, low maximum depth of discharge, and low discharge time
mong six battery energy storage technologies, required an additional
8.66 GW renewable energy capacity than the lithium-ion battery in
040 and generated 2.9% additional carbon dioxide emissions than the
ithium-ion battery on average. In addition, the energy storage system
echnologies with short lifetimes and cycling limits required frequent
eplacement, especially when analyzing high renewable energy integra-
ion targets in the long horizon. Therefore, we raised two suggestions on
nergy storage system configurations in power systems and energy tran-
ition studies. The first suggestion was that energy storage system tech-
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marized in Tables A.2 and A.3 . 
ologies’ technical and economic characteristics should be thoroughly
larified to avoid inaccurate estimation of energy storage systems’ power
ispatches. The second suggestion was that the system planner should
arefully review some characteristics of the energy storage system tech-
ologies and their impacts on the reliability of power system operation,
uch as the energy storage system technologies with high energy loss
nd low energy loss. Furthermore, based on the cross-sensitively analy-
is of the technical, economic, and operational criteria, we found that the
anadium redox flow battery had the highest performance score, with
n average score of 0.546 in 2040, because of its high cycling limits, high
aximum depth of discharge, and long discharge time. In contrast, the
ickel-cadmium battery had the lowest score in 2040, with an average
core of 0.387, due to its high energy loss, low cycling limit, and high
apital cost. The lithium-ion, lead-acid, and sodium-sulfur battery had
he top selection priority when the technical, economic, and operational
riteria were preferred, respectively. 
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Table A.1 

The consideration of ESS technology choices is based on the development, implemen

ESS technology Selection Reasons for selection

Lithium –ion battery (LIB) Yes The LIB is the most c
electric vehicles (EV
used for energy man

Sodium–sulfur battery (NASB) Yes This ESS technology
energy transition pro
implementation of R

Lead–acid battery (LAB) Yes Although there is co
environmental impa
[101] . Hence, it is st
power systems. 

Hydrogen energy storage (HES) No This technology is th
future grid design [1
not applicable for la
and restricted storag

Superconducting magnetic energy storage 
(SMES) 

No This advanced ESS t
able to stabilize the 
However, SMES typi

Supercapacitor energy storage (SCES) No This advanced ESS t
energy density, whic
systems [97] , but no

Nickel–cadmium battery (NICDB) Yes This mature ESS tech
large-scale power sy

Vanadium redox flow battery (VRFB) Yes The most developed 
reductions [110] wit

Flywheel energy storage (FES) No This mature mechan
EV power supply [11
applicable for short-

Underground compressed air energy 
storage (CAES) 

No This mature and clas
[112] and studied in
the suitability of geo

Pumped Hydrogen Storage (PHS) No The ESS technology 
constructing PHS req
cannot be scalable a

Zinc–bromine battery (ZNBRB) Yes The classic flow batt
The advantage make

Polysulfide bromine flow battery (PSB) No The typical flow batt
development for tech
commercial operatio

Thermal chemical heat storage (TCES) No Some mature TECS t
unsuitable for NYS w
medium to increase 

16 
ppendix A: Energy storage system technology selection, 

haracteristics review, and future cost simulation 

Appendix A presents the process of ESS technology selection, char-
cteristics review, and future cost reduction simulation as the first step
entioned in the research framework in Section 3.1 and as shown in

ig. 1 . Based on the literature reviews of several current ESS technol-
gy developments [90] and prospects reviews [51] and assessments
91] from different domains in power and energy systems [92] , such as
ersatile applications [46] , distribution networks [93] , sizing and con-
rol [94] , smart girds [95] , microgrids [96] , and ESS roles and impact
97] in large scale RE integration [57] , we select six typical ESS tech-
ologies and the reasons why the ESS technology is selected are summa-
ized in Table A.1 . Specifically, in our study, the ESS technology shall
e scalable and used for large-scale energy management in the power
ystem. Hence, the ESS technologies used in our study can further be
lassified as the battery energy storage system (BESS). In addition, it is
orth noting that our study does not consider pumped hydrogen storage

PHS), one of the common ESS technologies [98] but has less flexibility
ince its construction and implementation is restricted by geographical
onditions [76] . Its extension is not planned by NYISO in NYS’s gold
ook [60] and the power trend report [48] , and its capacity cannot be
calable easily. The economic and technical characteristics of the six
ESS technologies collected from previous ESS review studies are sum-
tation, and suitability for the large-scale energy management of the case study. 

 

ommonly used technology in studies and applications in power systems [10] and 
s) [99] . It obtains the most focus in future implementation and can be potentially 
agement [57] . 
 has been utilized in RE integration [100] and evaluation processes [79] in the 
blem. The high specific energy makes NASB more easily scalable for the 
E integration [57] . 
ncern about pollution in the recycling process, some studies have pointed out that the 
ct can be mitigated by the advance recycle method with an improved technique 
ill a preferred ESS technology for optimization [102] and assessment [103] studies of 

e focused investment and development target in the NYS power system [104] and 
05] . However, HES is still in the early developing stage [106] and is not scalable and 
rge-scale applications, considering the chemical process requires expensive catalysts 
e conditions for the hydrogen [51] . 
echnology has a low capital cost, long lifetime, and high energy density making it 
intermittent RE supply [107] and support the power system’s energy transition [57] . 
cally used for voltage regulation [52] and does not apply to large-scale applications. 
echnology has bullish prospects due to its low capital cost, long lifetime, and high 
h allow it to smooth the voltage of the RE power supply [108] in future power 
t applicable for energy management in large-scale applications. 
nology has been used in ESS technology selection studies [44] and grid-level and 

stem studies [109] . 
flow battery. It is expected to have additional technical innovations and price 
h competitive development [96] . 
ical ESS is typically used for applications and studies in the power system [111] or 
] . However, the short discharge time and the high self-discharge ratio make FES only 

term applications [51] . 
sic mechanical energy storage system has been used in large-scale power systems 
 power system optimization problems [113] . However, CAES scalability is based on 
logical formations for gas vessel construction, which cannot be scalable easily [51] . 
has the largest installed capacity for grid-connected applications [46] . However, 
uires geographical availability, such as the high altitude between revivors, which 

nd thus not be considered. 
ery has a high discharge time, high energy density, and deep depth of discharge [46] . 
s ZNBRB can be potentially used for large-scale applications. 
ery has a quick response time but low efficiency. In addition, PSB is still under 
nology improvement and has no experience in large-scale applications and 

ns [46] . Therefore, PSB is not considered in our study. 
echnologies require specific preservation and are not allowed to freeze, which is 
eather conditions. The other TECS technologies need the improvement of storage 

the extendability[57]. Hence, TCES is not considered in this study. 
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Table A.2 

The main economic characteristics of BESS technologies used in our study. 

Technology Capital cost ($/kW) Fixed O&M cost ($/kW-yr) Variable O&M cost ($/MWh) Replacement Cost ($/kW) 

LIB 1200–4000 [46] 2.2–15.2 [53] 0.44–6.22 [53] 207.6–602.7 [53] 
NASB 1000–3000 [46] 2.2–19.2 [53] 0.33–6.22 [53] 199.8–491.7 [53] 
LAB 300–600 [46] 3.6–14.4 [53] 0.17–0.58 [53] 55.5–621.6 [53] 
NICDB 500–1500 [46] 4.4–26.6 [53] 8.81 [56] 530.6–636.0 [53] 
VRFB 600–1500 [46] 3.8–19.2 [53] 0.22–3.11 [53] 123.2–213.1 [53] 
ZNBRB 400–2500 [46] 3.6–7.7 [53] 0.33–2.22 [53] 112.1–223.1 [53] 

Table A.3 

The main technical characteristics of the BESS technologies used in our study. 

Technology Lifetime (years) Cycling Limit 
Cycling 
efficiency (%) 

Discharge 
efficiency (%) 

Maximum 

DOD (%) 
Discharge time at 
rated power (h) 

Self-discharge rate 
(%/day) 

LIB 5–15 [46] 1500–3500 [51] 90–97 [52] 85 [52] 80 [115] 1–8 [52] 0.1–0.3 [46] 
NASB 15–20 [46] 2500–4500 [52] 75–90 [52] 85 [52] 90 [115] 4–8 [91] 0.05 [46] 
LAB 5–15 [46] 200–1800 [52] 63–90 [52] 85 [52] 60-70 [115] 1–5 [91] < 0.1 [46] 
NICDB 10–20 [46] 3500 [51] 60–83 [52] 85 [52] 100 [115] 6–8 [91] 0.2–0.6 [46] 
VRFB 5–20 [46] 12,000 + [52] 75–85 [52] 75–82 [52] 100 [115] 2–12 [91] 0.15 [46] 
ZNBRB 5–20 [46] 2000 + [52] 66–80 [52] 66–70 [52] 100 [115] 1–10 [52] Almost 0 [46] 
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From the review of the BESS technology characteristics, we discover
hat it is difficult to conclude which BESS technology performs better by
omparing single characteristics without systematically analyzing multi-
le characteristics using the integrated OPF-MCDM model. For instance,
ICDB has high O&M and replacement costs but a relatively low capital
ost with an average lifetime among all BESS technologies. Therefore,
 systematical and multidimensional evaluation is required, and we can
ventually obtain the BESS technologies’ performance scores by import-
ng all the parameters from the tables into the integrated OPF-MCDM
odel. In addition, we can have a relatively fair mechanism to compare

nd select ESS technology for RE integration and energy transition. 
In addition, because the time span of our study is relatively long,

rom 2025 to 2040, future cost reductions of ESSs may occur due to
he optimization of installation and component manufacturing [114] .
ence, we adopt the concept of ESS technology cost prediction from the
REL [64] : using conservative, moderate, and advanced technology in-
ovation scenarios with three different decline ratios to simulate future
SS technology cost reductions. From the above reviews of BESS tech-
ologies, if more than half of the studies point out promising prospects
or developing ESS technologies (LIB, VRFB), the BESS technologies are
artitioned into advanced innovation scenarios. If the BESS technologies
LAB and NICDB) receive few notices or have environmental concerns,
hey are partitioned into conservative innovation scenarios. The other
ESS technologies (NASB and ZNBRB) receive mixed opinions on future
rowth and are partitioned into moderate innovation scenarios. The var-
ous cost decline ratios by innovation scenario are attached to all the
ESS technology costs when reaching a specific year in the integrated
PF-MCDM model. 

ppendix B: Constraints of the optimal power flow model 

Appendix B describes the four types of constraints utilized in our OPF
odel, including generator constraints, ESS constraints, network oper-

tional constraints, and the annual CO 2 emissions and RE production
onstraints presented in Sections B.1, B.2, B.3, and B.4, respectively.
he objective function of the OPF model is presented in Section 3.2 . 

enerator constraints 

The generator constraints restrict the locational generator’s power
ispatch, capacity extension, and retirement year. First, the generator
ispatch 𝑃 𝐺 

𝑠𝑠,𝑏,𝑟,𝑡 
at bus b with energy carrier r at time t in the scenario ss

s constrained by its installed capacity 𝑀 

𝐺 
𝑠𝑠,𝑏,𝑟 

, as shown in Eq. (B1) . 

 ≤ 𝑃 𝐺 
𝑠𝑠,𝑏,𝑟,𝑡 

≤ 𝑀 

𝐺 

𝑠𝑠,𝑏,𝑟 
⋅ 𝑔 𝑏,𝑟,𝑡 ⋅𝑋 

𝐺 

𝑦,𝑏,𝑟 
, ∀𝑠𝑠 ∈ 𝑆 𝑆 , ∀𝑦 ∈ 𝑌 , ∀𝑏 ∈ 𝐵, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (B1)
17 
here B is the set of buses in the model, R is the set of energy carriers,
nd T is the set of hours within a year. 𝑔 𝑏,𝑟,𝑡 is the time-dependent avail-
bility. The values of the availability 𝑔 𝑏,𝑟,𝑡 of RE sources, such as onshore
ind power, offshore wind power, and distributed solar, are determined
y weather conditions and radiation intensity obtained from the NREL
ntegrated dataset toolkit [116] . For the other generator carriers, the
alues of their availability 𝑔 𝑏,𝑟,𝑡 are defined as their maximum operation
hresholds, which are usually constant. The generator installed capacity
 

𝐺 
𝑠𝑠,𝑏,𝑟 

values are composited by the installed capacities from existing

acilities 𝑀 

𝐸𝑋 
𝑠𝑠,𝑏,𝑟 

and the extendable RE installation 𝑀 

𝑅𝐸 
𝑠𝑠,𝑏,𝑟 

. Considering
urrent studies have concentrated on the dispatchable RE [68] , men-
ioning the dispatch ability of RE is crucial for future power system de-
ign [70] and the dispatch ability of RE can be improved by algorithms
69] or energy management systems (EMSs) [66] . We assume all energy
arriers are dispatchable in our optimization framework. In addition, for
he retirement evaluation, 𝑋 

𝐺 
𝑦,𝑏,𝑟 

is the generator retirement indicator,
hich is a binary variable considering the safe operation of generators.

n the case where the difference between year y and the in-service date
 𝑖𝑠 is larger than the generator’s lifetime 𝑦 𝑙𝑚𝑡 , 𝑋 

𝐺 = 0; otherwise, 𝑋 

𝐺 = 1,
eaning the generator is still in service in year y , as denoted in Eq. (B2) .

 

𝑋 

𝐺 
𝑦,𝑏,𝑟 

= 1 𝑖𝑓 𝑦 − 𝑦 𝑖𝑠 ≤ 𝑦 𝑙𝑚𝑡 

𝑋 

𝐺 
𝑦,𝑏,𝑟 

= 0else , ∀𝑦 ∈ 𝑌 , ∀𝑏 ∈ 𝐵, ∀𝑟 ∈ 𝑅 (B2)

For generator capacity extensions, the installed capacity 𝑀 

𝑅𝐸 
𝑠𝑠,𝑏,𝑟 

is

onstrained by the extension threshold 𝐻 

𝑅𝐸 
𝑦,𝑏,𝑟 

and the capacity from the
revious year, as shown in Eq. ( B3 ). In this study, one of the main focuses
n generators is RE integration in future power systems. Thus, only RE
s extendable, and r belongs to the RE subset 𝑅 𝑅𝐸 . 

 

𝑅𝐸 

𝑒,𝑠,𝑦 −1 ,𝑏,𝑟 ≤ 𝑀 

𝑅𝐸 

𝑠𝑠,𝑏,𝑟 
≤ 𝐻 

𝑅𝐸 

𝑦,𝑏,𝑟 
, ∀𝑠𝑠 ∈ 𝑆 𝑆 , ∀𝑒 ∈ 𝐸, ∀𝑠 ∈ 𝑆, ∀𝑦 ∈ 𝑌 , ∀𝑏 ∈ 𝐵, ∀𝑟 ∈ 𝑅 𝑅𝐸 

(B3) 

In addition, Eqs. (B4) –( B7 ) calculate the annual generator capital
ost, annual generator fixed O&M cost and variable O&M cost, and gen-
rator retirement cost, respectively. 

 

𝐺𝐶 

𝑠𝑠 
= 

∑
𝑏 ∈𝐵 

∑
𝑟 ∈𝑅𝐸 

( 𝑀 

𝑅𝐸 

𝑠𝑠,𝑏,𝑟 
− 𝑀 

𝑅𝐸 

𝑒,𝑠,𝑦 −1 ,𝑏,𝑟 ) ⋅ 𝑐 
𝐺𝐶 

𝑦,𝑟 
, ∀𝑠𝑠 ∈ 𝑆 𝑆 , ∀𝑒 ∈ 𝐸, ∀𝑠 ∈ 𝑆, ∀𝑦 ∈ 𝑌 

(B4) 

 

𝐺𝐹 

𝑠𝑠 
= 

∑
𝑏 ∈𝐵 

∑
𝑟 ∈𝑅 

𝑀 

𝐺 

𝑠𝑠,𝑏,𝑟 
⋅c 𝐺𝐹 

𝑦,𝑟 
, ∀𝑠𝑠 ∈ 𝑆 𝑆 , ∀𝑦 ∈ 𝑌 (B5)

 

𝐺𝑉 

𝑠𝑠 
= 

∑
𝑡 ∈𝑇 

∑
𝑏 ∈𝐵 

∑
𝑟 ∈𝑅 

𝑃 𝐺 
𝑠𝑠,𝑏,𝑟,𝑡 

⋅(c 𝐺𝑉 

𝑦,𝑟 
+ 𝐷 𝑟 ⋅ 𝑐 

𝑑 

𝑦 
) , ∀𝑠𝑠 ∈ 𝑆 𝑆 , ∀𝑦 ∈ 𝑌 (B6)
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𝐺𝑅 

𝑠𝑠 
= 

∑
𝑏 ∈𝐵 

∑
𝑟 ∈𝑅 

𝑀 

𝐺 

𝑠𝑠,𝑏,𝑟 
⋅ (1 − 𝑋 

𝐺 

𝑦,𝑏,𝑟 
) ⋅c 𝐺𝑅 

𝑦,𝑟 
, ∀𝑠 ∈ 𝑆 𝑆 , ∀𝑦 ∈ 𝑌 (B7)

here 𝑐 𝐺𝐶 
𝑦,𝑟 

is the generator unit capital cost, 𝑐 𝐺𝐹 
𝑦,𝑟 

is the annual generator

nit fixed O&M cost, 𝑐 𝐺𝑉 
𝑦,𝑟 

is the hourly generator unit variable O&M cost,

nd 𝑐 𝐺𝑅 
𝑦,𝑟 

is the unit retirement cost for generator carrier r in year y . 𝐷 𝑟 and

 

𝑑 
𝑦 
are the unit emission of generator carrier r and the emissions social

ost of CO 2 in year y, from the investigations of the previous studies
65] . 

nergy storage system constraints 

The dispatch 𝑃 𝐸𝑆𝑆 
𝑠𝑠,𝑏,𝑡 

of the ESS at bus 𝑏 with the technology e at time
 in the ss scenario is constrained by the installed capacity of the ESS
 

𝐸𝑆𝑆 
𝑠𝑠,𝑏 

, as shown in Eq. (B8) . 

 ⋅ 𝜂𝑐𝑦𝑐 
𝑒 

⋅𝑀 

𝐸𝑆𝑆 
𝑠𝑠,𝑏 

≤ 𝑃 𝐸𝑆𝑆 
𝑠𝑠,𝑏,𝑡 

≤ 𝑧 ⋅ 𝜂𝑑𝑖𝑠𝑐 
𝑒 

⋅𝑀 

𝐸𝑆𝑆 
𝑠𝑠,𝑏 

, ∀𝑠𝑠 ∈ 𝑆 𝑆 , ∀𝑏 ∈ 𝐵, ∀𝑡 ∈ 𝑇 

(B8) 

here z is a binary variable indicating whether the ESS is charging or
ischarging. 𝜂𝑐𝑦𝑐 𝑒 is the round-trip, or so-called cycling efficiency, and
𝑑𝑖𝑠𝑐 
𝑒 

is the discharge efficiency. In addition, the relationship for the en-
rgy level 𝐸𝐿 𝑠𝑠,𝑏,𝑡 in ESS between time t and the previous hour 𝑡 − 1 can
e represented as Eq. (B9) . 

 𝐿 

𝑠𝑠,𝑏,𝑡 
= 𝐸 𝐿 

𝑠𝑠,𝑏,𝑡 −1 − ▵ 𝑡 × 𝑃 𝐸𝑆𝑆 

𝑠𝑠,𝑏,𝑡 
− 

𝜂
𝑠𝑒𝑙𝑓 
𝑒 

24 
, ∀𝑠𝑠 ∈ 𝑆 𝑆 , ∀𝑒 ∈ 𝐸, ∀𝑏 ∈ 𝐵, ∀𝑡 ∈ 𝑇 

(B9) 

here 𝜂𝑠𝑒𝑙𝑓 𝑒 is the daily self-discharge ratio of ESS technology e . ▵ 𝑡 rep-
esents the hourly time resolution in our model. 𝐸𝐿 

𝑠𝑠,𝑏,𝑡 
is the energy

evel in the ESS at bus b and time t. Furthermore, for the ESS capacity
xtensions, the installed capacity 𝑀 

𝐸𝑆𝑆 
𝑠𝑠,𝑏 

at bus b in the ss scenario and

ear y is constrained by the ESS capacity extension threshold 𝐻 

𝐸𝑆𝑆 
𝑦,𝑏 

, and
he capacity installed in the previous year, as shown in Eq. (B10) . 

 

𝐸𝑆𝑆 

𝑒,𝑠,𝑦 −1 ,𝑏 ≤ 𝑀 

𝐸𝑆𝑆 

𝑠𝑠,𝑏 
≤ 𝐻 

𝐸𝑆𝑆 

𝑦,𝑏 
, ∀𝑠𝑠 ∈ 𝑆 𝑆 , ∀𝑒 ∈ 𝐸, ∀𝑠 ∈ 𝑆, ∀𝑦 ∈ 𝑌 , ∀𝑏 ∈ 𝐵 

(B10) 

nd Eq. (B11) evaluates whether the ESS needs to be replaced in year
 by the indicator 𝑋 

𝐸𝑆𝑆 
𝑒,𝑦,𝑏 

. We assume the ESS in-service date is in 2025
nd assume that the annual cycling of each ESS technology is increased
y the load increment ratio by years between the representative years
o evaluate the replacements. 

 

 

 

 

 

 

 

X 

𝐸𝑆𝑆 
𝑒,𝑦,𝑏 

= 1 𝑖𝑓 𝑦 − 𝑦 𝑒𝑖𝑠 ≥ 𝑦 𝑒𝑙𝑡 

X 

𝐸𝑆𝑆 
𝑒,𝑦,𝑏 

= 1 𝑖𝑓 𝑁 𝑒 ≥ 𝑁 

𝑙𝑚𝑡 
𝑒 

X 

𝐸𝑆𝑆 
𝑒,𝑦,𝑏 

= 0else 

, ∀𝑒 ∈ 𝐸, ∀𝑦 ∈ 𝑌 , ∀𝑏 ∈ 𝐵 (B11)

If the ESS system’s in-service year 𝑦 𝑒𝑖𝑠 and year y difference are more
han the ESS technology lifetime 𝑦 𝑒𝑙𝑡 , or the accumulated cycling time
 𝑒 is larger or equal to the cycling limit 𝑁 

𝑙𝑚𝑡 
𝑒 

, the indicator 𝑋 

𝐸𝑆𝑆 
𝑒,𝑦,𝑏 

= 1;

therwise, 𝑋 

𝐸𝑆𝑆 
𝑒,𝑦,𝑏 

= 0. In addition, the annual ESS capital cost, annual ESS
xed O&M cost, annual ESS variable O&M cost, and the replacement cost
f ESS are denoted in Eqs. (B12) , ( B13 ), ( B14 ), and ( B15 ), respectively.

 

𝐸𝐶 
𝑠𝑠 

= ( 
∑
𝑏 ∈𝐵 

( 𝑀 

𝐸𝑆𝑆 
𝑠𝑠,𝑏 

− 𝑀 

𝐸𝑆𝑆 
𝑒,𝑠,𝑦 −1 ,𝑏 ) + 

∑
𝑏 ∈𝐵 

𝑀 

𝐸𝑆𝑆 
𝑒,𝑠,𝑦 −1 ,𝑏 ⋅𝑋 

𝐸𝑆𝑆 
𝑒,𝑦,𝑏 

) ⋅ 𝑐 𝐸𝐶 
𝑒,𝑦 

, 

𝑠𝑠 ∈ 𝑆 𝑆 , ∀𝑒 ∈ 𝐸, ∀𝑠 ∈ 𝑆, ∀𝑦 ∈ 𝑌 , ∀𝑏 ∈ 𝐵 

(B12) 

 

𝐸𝐹 
𝑠𝑠 

= 

∑
𝑏 ∈𝐵 

𝑀 

𝐸𝑆𝑆 
𝑠𝑠,𝑏 

⋅ 𝑐 𝐸𝐹 
𝑒,𝑦 

, ∀𝑠𝑠 ∈ 𝑆 𝑆 , ∀𝑒 ∈ 𝐸, ∀𝑦 ∈ 𝑌 (B13)

 

𝐸𝑉 
𝑠𝑠 

= 

∑
𝑡 ∈𝑇 

∑
𝑏 ∈𝐵 

𝑃 𝐸𝑆𝑆 
𝑠𝑠,𝑏,𝑡 

⋅c 𝐸𝑉 
𝑒,𝑦 

, ∀𝑠𝑠 ∈ 𝑆 𝑆 , ∀𝑒 ∈ 𝐸, ∀𝑦 ∈ 𝑌 (B14)

 

𝐸𝑅 
𝑠𝑠 

= 

∑
𝑏 ∈𝐵 

𝑀 

𝐸𝑆𝑆 
𝑠𝑠,𝑏 

⋅𝑋 

𝐸𝑆𝑆 
𝑒,𝑦,𝑏 

⋅c 𝐸𝑅 
𝑒,𝑦 

, ∀𝑠𝑠 ∈ 𝑆 𝑆 , ∀𝑒 ∈ 𝐸, ∀𝑦 ∈ 𝑌 (B15)
18 
here 𝑐 𝐸𝐶 
𝑒,𝑦 

is the ESS unit capital cost, 𝑐 𝐸𝐹 
𝑒,𝑦 

is the ESS unit fixed O&M

ost, 𝑐 𝐸𝑉 
𝑒,𝑦 

is the hourly ESS unit variable O&M cost, and 𝑐 𝐸𝑅 
𝑒,𝑦 

is the unit
eplacement cost for ESS in year y . 

etwork operational constraints 

The power demand 𝑃 𝐿𝐷 
𝑠𝑠,𝑏,𝑡 

at bus b at time t in scenario ss in year y
s balanced by either the generators or ESS discharge at bus b or the
ispatch from other buses through branch l with the power flow, as
hown in Eqs. (B16) , ( B17 ), and ( B18 ), respectively. 

𝑟 

𝑃 𝐺 
𝑠𝑠,𝑏,𝑟,𝑡 

+ 𝑃 𝐸𝑆𝑆 
𝑠𝑠,𝑏,𝑡 

− 𝑃 𝐿𝐷 
𝑠𝑠,𝑏,𝑡 

= 

∑
𝑙 

𝑃 𝐹 
𝑠𝑠,𝑙,𝑡 

, ∀𝑠𝑠 ∈ 𝑆 𝑆 , ∀𝑏 ∈ 𝐵, ∀𝑡 ∈ 𝑇 (B16)

 

𝐹 
𝑠𝑠,𝑙,𝑡 

= B B 𝑖𝑗 ( 𝜃𝑖,𝑡 − 𝜃𝑗,𝑡 ) ∀𝑠𝑠 ∈ 𝑆 𝑆 , ∀𝑡 ∈ 𝑇 , ∀𝑙 ∈ 𝐿, ∀𝑖 ∈ 𝐵, ∀𝑗 ∈ 𝐵 (B17)

1 = 0 (B18)

here 𝑃 𝐺 
𝑠𝑠,𝑏,𝑟,𝑡 

is the generator dispatch at bus b with carrier r at time t in

cenario ss , 𝑃 𝐸𝑆𝑆 
𝑠𝑠,𝑏,𝑡 

is the ESS dispatch at bus b and in time t in scenario ss ,

nd 𝑃 𝐹 
𝑠𝑠,𝑙,𝑡 

is the power flow from transmission line l connected to bus i

nd j at time t in scenario ss . The power flow 𝑃 𝐹 
𝑠𝑠,𝑙,𝑡 

is equal to the product
f the susceptance 𝐵𝐵 𝑖𝑗 of the transmission line and the voltage phase
ngle 𝜃𝑗 difference between buses i and j at time t . The slack bus voltage
hase angles 𝜃1 are settled to 0. In addition, the amounts of power flow
re constrained by the apparent power 𝑀 

𝐴𝑃 
𝑠𝑠,𝑖,𝑗 

, as given in Eq. (B19) . i and
 are the buses connected by transmission line l . Negative and positive
ower flow represents the flow direction between buses i and j . 

 𝑀 

𝐴𝑃 
𝑠𝑠,𝑖,𝑗 

≤ 𝐵𝐵 𝑖𝑗 ( 𝜃𝑖 − 𝜃𝑗 ) ≤ 𝑀 

𝐴𝑃 
𝑠𝑠,𝑖,𝑗 

, ∀𝑠𝑠 ∈ 𝑆 𝑆 , ∀𝑖 ∈ 𝐵, ∀𝑗 ∈ 𝐵 (B19)

For the line capacity extensions, the apparent power 𝑀 

𝐴𝑃 
𝑠𝑠,𝑙 

at branch
 in the ss scenario and year y is optimized between the original values
nd the maximum extended factor 𝛼𝑙 , as shown in Eq. (B20) . 

 

AP 
ss ,𝑙 

≤ 𝑀 

AP 
𝑙 

⋅ 𝛼𝑙 , ∀𝑠 ∈ SS , ∀𝑙 ∈ 𝐿 (B20) 

nnual carbon dioxide emissions and RE production constraints 

Energy production and CO 2 emissions constraints are from the stage-
ide climate goals mentioned in Section 3.2 , including CO 2 emissions
nd RE production. The CO 2 emissions are caused by the generator op-
ration. The expression is described in Eq. (B21) . ∑
 ∈𝐵 

∑
𝑟 ∈𝑅 

∑
𝑡 ∈𝑇 

𝑃 𝐺 
𝑠𝑠,𝑏,𝑟,𝑡 

⋅ 𝑔 𝑏,𝑟,𝑡 ⋅𝐷 𝑟 ≤ 𝐶𝐸𝐿 𝑦 , ∀𝑠𝑠 ∈ 𝑆 𝑆 , ∀𝑦 ∈ 𝑌 (B21)

here 𝑃 𝐺 
𝑠𝑠,𝑏,𝑟,𝑡 

is the energy dispatch from generators, 𝑔 𝑏,𝑟,𝑡 is the avail-
bly or maximum output of the generators, and 𝐷 𝑟 is the unit emission
f the generator carrier r . The total CO 2 emissions shall be less than or
qual to the year’s emission target 𝐶𝐸𝐿 𝑦 . On the other hand, the RE
roduction constraints force the RE dispatch to reach the expectation of
tage-wise climate goals [69] toward energy transition in NYS, as shown
n Eq. (B22) . ∑
 ∈𝐵 

∑
𝑟 ∈𝑅 RE 

∑
𝑡 ∈𝑇 

𝑃 𝐺 
ss ,𝑏,𝑟,𝑡 

⋅ 𝑔 𝑏,𝑟,𝑡 ≥ 

∑
𝑏,𝑡 

𝑃 LD 
ss ,𝑏,𝑡 

⋅ 𝑅𝑃 𝑦,𝑟 , ∀ss ∈ SS , ∀𝑦 ∈ 𝑌 , ∀𝑟 ∈ 𝑅 RE 

(B22) 

here 𝑃 𝐺 
𝑠𝑠,𝑏,𝑟,𝑡 

is the generator power dispatch, 𝑔 𝑏,𝑟,𝑡 is the availability of

E at time t , 𝑃 𝐿𝐷 
𝑠𝑠,𝑏,𝑡 

is the load at bus b at time t in scenario ss , and 𝑅𝑃 𝑦,𝑟 is
he RE penetration target ratio in year y . 
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